@@ -48,7 +48,6 @@ def __new__(cls, name, variant_test_name=""):
4848 AllowedOpInfoEntry ('bitwise_right_shift' ),
4949 AllowedOpInfoEntry ('ceil' ),
5050 AllowedOpInfoEntry ('cholesky' ),
51- AllowedOpInfoEntry ('cholesky_inverse' ),
5251 AllowedOpInfoEntry ('chunk' ),
5352 AllowedOpInfoEntry ('clone' ),
5453 AllowedOpInfoEntry ('contiguous' ),
@@ -108,9 +107,6 @@ def __new__(cls, name, variant_test_name=""):
108107 AllowedOpInfoEntry ('linalg.cholesky' ),
109108 AllowedOpInfoEntry ('linalg.cholesky_ex' ),
110109 AllowedOpInfoEntry ('linalg.householder_product' ),
111- AllowedOpInfoEntry ('linalg.matrix_power' ),
112- AllowedOpInfoEntry ('linalg.qr' ),
113- AllowedOpInfoEntry ('linalg.slogdet' ),
114110 AllowedOpInfoEntry ('log' ),
115111 AllowedOpInfoEntry ('log10' ),
116112 AllowedOpInfoEntry ('log1p' ),
@@ -119,7 +115,6 @@ def __new__(cls, name, variant_test_name=""):
119115 AllowedOpInfoEntry ('logaddexp2' ),
120116 AllowedOpInfoEntry ('logical_not' ),
121117 AllowedOpInfoEntry ('lt' ),
122- AllowedOpInfoEntry ('lu' ),
123118 AllowedOpInfoEntry ('lu_unpack' ),
124119 AllowedOpInfoEntry ('masked_fill' ),
125120 AllowedOpInfoEntry ('masked_scatter' ),
@@ -154,7 +149,6 @@ def __new__(cls, name, variant_test_name=""):
154149 AllowedOpInfoEntry ('permute' ),
155150 AllowedOpInfoEntry ('pow' ),
156151 AllowedOpInfoEntry ('float_power' ),
157- AllowedOpInfoEntry ('qr' ),
158152 AllowedOpInfoEntry ('rad2deg' ),
159153 AllowedOpInfoEntry ('real' ),
160154 AllowedOpInfoEntry ('roll' ),
@@ -178,15 +172,12 @@ def __new__(cls, name, variant_test_name=""):
178172 AllowedOpInfoEntry ('hsplit' ),
179173 AllowedOpInfoEntry ('vsplit' ),
180174 AllowedOpInfoEntry ('dsplit' ),
181- AllowedOpInfoEntry ('triangular_solve' ),
182175 AllowedOpInfoEntry ('trunc' ),
183176 AllowedOpInfoEntry ('exp2' ),
184177 AllowedOpInfoEntry ('nan_to_num' ),
185178 AllowedOpInfoEntry ('square' ),
186179 AllowedOpInfoEntry ('lerp' ),
187- AllowedOpInfoEntry ('linalg.inv' ),
188180 AllowedOpInfoEntry ('angle' ),
189- AllowedOpInfoEntry ('linalg.solve' ),
190181 AllowedOpInfoEntry ('polar' ),
191182 AllowedOpInfoEntry ('ravel' ),
192183 AllowedOpInfoEntry ('reshape' ),
@@ -269,6 +260,7 @@ def __new__(cls, name, variant_test_name=""):
269260 # AllowedOpInfoEntry('asinh'),
270261 # AllowedOpInfoEntry('atan'),
271262 # AllowedOpInfoEntry('atanh'),
263+ # AllowedOpInfoEntry('cholesky_inverse'),
272264 # AllowedOpInfoEntry('cos'),
273265 # AllowedOpInfoEntry('cosh'),
274266 # AllowedOpInfoEntry('cov'),
@@ -288,14 +280,20 @@ def __new__(cls, name, variant_test_name=""):
288280 # AllowedOpInfoEntry('linalg.eig'), # Slice dim size 1 greater than dynamic slice dimension: 0
289281 # AllowedOpInfoEntry('linalg.eigh'),
290282 # AllowedOpInfoEntry('linalg.eigvalsh'),
283+ # AllowedOpInfoEntry('linalg.inv'), # Slice dim size 1 greater than dynamic slice dimension: 0
291284 # AllowedOpInfoEntry('linalg.inv_ex'), # Slice dim size 1 greater than dynamic slice dimension: 0
285+ # AllowedOpInfoEntry('linalg.slogdet'), # Slice dim size 1 greater than dynamic slice dimension: 0
286+ # AllowedOpInfoEntry('linalg.qr'), # Slice dim size 1 greater than dynamic slice dimension: 0
292287 # AllowedOpInfoEntry('linalg.lstsq'),
293288 # AllowedOpInfoEntry('linalg.norm'),
294289 # AllowedOpInfoEntry('linalg.matrix_norm'),
295290 # AllowedOpInfoEntry('linalg.matrix_rank'), # Slice dim size 1 greater than dynamic slice dimension: 0
291+ # AllowedOpInfoEntry('linalg.matrix_power'),
292+ # AllowedOpInfoEntry('linalg.solve'),
296293 # AllowedOpInfoEntry('linalg.svd'), # Slice dim size 1 greater than dynamic slice dimension: 0
297294 # AllowedOpInfoEntry('linalg.svdvals'), # Slice dim size 1 greater than dynamic slice dimension: 0
298295 # AllowedOpInfoEntry('linalg.vector_norm'),
296+ # AllowedOpInfoEntry('lu'),
299297 # AllowedOpInfoEntry('std_mean'),
300298 # AllowedOpInfoEntry('sum'),
301299 # AllowedOpInfoEntry('mean'),
@@ -328,6 +326,7 @@ def __new__(cls, name, variant_test_name=""):
328326 # AllowedOpInfoEntry('repeat'),
329327 # AllowedOpInfoEntry('squeeze'),
330328 # AllowedOpInfoEntry('tile'),
329+ # AllowedOpInfoEntry('triangular_solve'),
331330 # AllowedOpInfoEntry('var'),
332331 # AllowedOpInfoEntry('logsumexp'),
333332 # AllowedOpInfoEntry('transpose'),
@@ -339,6 +338,7 @@ def __new__(cls, name, variant_test_name=""):
339338 # AllowedOpInfoEntry('norm'),
340339 # AllowedOpInfoEntry('t'),
341340 # AllowedOpInfoEntry('logdet'), xla::lodget does not handle empty input
341+ # AllowedOpInfoEntry('qr'), # Slice dim size 1 greater than dynamic slice dimension: 0
342342
343343 # Failed on CUDA CI only (investigate)
344344 # app.circleci.com/pipelines/github/pytorch/xla/9088/workflows/2d59c649-db2b-4384-921e-5e43eba1b51a/jobs/17875
@@ -410,6 +410,7 @@ def test_reference_eager(self, device, dtype, op):
410410 if self .device_type != 'xla' :
411411 self .skipTest ("This test runs only on XLA" )
412412
413+ print (op )
413414 sample_inputs = op .sample_inputs (device , dtype )
414415 for sample_input in sample_inputs :
415416 self .compare_with_eager_reference (op , sample_input )
0 commit comments