Skip to content

Commit 9cabfef

Browse files
authored
Update README.md
1 parent 607a0f9 commit 9cabfef

File tree

1 file changed

+55
-51
lines changed

1 file changed

+55
-51
lines changed

README.md

Lines changed: 55 additions & 51 deletions
Original file line numberDiff line numberDiff line change
@@ -142,9 +142,6 @@
142142
### PyTorch
143143
* [PyTorch](https://github.com/pytorch/pytorch) - Tensors and Dynamic neural networks in Python with strong GPU acceleration. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
144144
* [pytorch-lightning](https://github.com/Lightning-AI/lightning) - PyTorch Lightning is just organized PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
145-
* [torchvision](https://github.com/pytorch/vision) - Datasets, Transforms, and Models specific to Computer Vision. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
146-
* [torchtext](https://github.com/pytorch/text) - Data loaders and abstractions for text and NLP. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
147-
* [torchaudio](https://github.com/pytorch/audio) - An audio library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
148145
* [ignite](https://github.com/pytorch/ignite) - High-level library to help with training neural networks in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
149146
* [skorch](https://github.com/dnouri/skorch) - A scikit-learn compatible neural network library that wraps PyTorch. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
150147
* [Catalyst](https://github.com/catalyst-team/catalyst) - High-level utils for PyTorch DL & RL research. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
@@ -172,19 +169,19 @@
172169
### MXNet
173170
* [MXNet](https://github.com/apache/incubator-mxnet) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
174171
* [Gluon](https://github.com/gluon-api/gluon-api) - A clear, concise, simple yet powerful and efficient API for deep learning (now included in MXNet). <img height="20" src="img/mxnet_big.png" alt="MXNet based">
175-
* [gluon-cv](https://github.com/dmlc/gluon-cv) - Provides implementations of the state-of-the-art deep learning models in computer vision. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
176-
* [gluon-nlp](https://github.com/dmlc/gluon-nlp) - NLP made easy. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
177172
* [Xfer](https://github.com/amzn/xfer) - Transfer Learning library for Deep Neural Networks. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
178173
* [MXNet](https://github.com/ROCmSoftwarePlatform/mxnet) - HIP Port of MXNet. <img height="20" src="img/mxnet_big.png" alt="MXNet based"> <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU">
179174

180-
### Others
175+
### JAX
181176
* [jax](https://github.com/google/jax) - Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more.
177+
178+
### Others
179+
* [transformers](https://github.com/huggingface/transformers) - State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
182180
* [Tangent](https://github.com/google/tangent) - Source-to-Source Debuggable Derivatives in Pure Python.
183181
* [autograd](https://github.com/HIPS/autograd) - Efficiently computes derivatives of numpy code.
184182
* [Myia](https://github.com/mila-udem/myia) - Deep Learning framework (pre-alpha).
185183
* [nnabla](https://github.com/sony/nnabla) - Neural Network Libraries by Sony.
186184
* [Caffe](https://github.com/BVLC/caffe) - A fast open framework for deep learning.
187-
* [hipCaffe](https://github.com/ROCmSoftwarePlatform/hipCaffe) - The HIP port of Caffe. <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU">
188185

189186
## Reinforcement Learning
190187
* [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) - An API standard for single-agent reinforcement learning environments, with popular reference environments and related utilities (formerly [Gym](https://github.com/openai/gym)).
@@ -231,50 +228,6 @@
231228
* [GPyTorch](https://github.com/cornellius-gp/gpytorch) - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
232229
* [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite) - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn">
233230

234-
## Data Manipulation
235-
236-
### Data Frames
237-
* [pandas](https://pandas.pydata.org/pandas-docs/stable/) - Powerful Python data analysis toolkit.
238-
* [polars](https://github.com/pola-rs/polars) - A fast multi-threaded, hybrid-out-of-core DataFrame library.
239-
* [koalas](https://github.com/databricks/koalas) - pandas API on Apache Spark. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
240-
* [Arctic](https://github.com/manahl/arctic) - High-performance datastore for time series and tick data.
241-
* [datatable](https://github.com/h2oai/datatable) - Data.table for Python. <img height="20" src="img/R_big.png" alt="R inspired/ported lib">
242-
* [pandas_profiling](https://github.com/pandas-profiling/pandas-profiling) - Create HTML profiling reports from pandas DataFrame objects
243-
* [cuDF](https://github.com/rapidsai/cudf) - GPU DataFrame Library. <img height="20" src="img/pandas_big.png" alt="pandas compatible"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
244-
* [blaze](https://github.com/blaze/blaze) - NumPy and pandas interface to Big Data. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
245-
* [pandasql](https://github.com/yhat/pandasql) - Allows you to query pandas DataFrames using SQL syntax. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
246-
* [pandas-gbq](https://github.com/pydata/pandas-gbq) - pandas Google Big Query. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
247-
* [xpandas](https://github.com/alan-turing-institute/xpandas) - Universal 1d/2d data containers with Transformers .functionality for data analysis by [The Alan Turing Institute](https://www.turing.ac.uk/).
248-
* [pysparkling](https://github.com/svenkreiss/pysparkling) - A pure Python implementation of Apache Spark's RDD and DStream interfaces. <img height="20" src="img/spark_big.png" alt="Apache Spark based">
249-
* [modin](https://github.com/modin-project/modin) - Speed up your pandas workflows by changing a single line of code. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
250-
* [swifter](https://github.com/jmcarpenter2/swifter) - A package that efficiently applies any function to a pandas dataframe or series in the fastest available manner.
251-
* [pandas-log](https://github.com/eyaltrabelsi/pandas-log) - A package that allows providing feedback about basic pandas operations and finds both business logic and performance issues.
252-
* [vaex](https://github.com/vaexio/vaex) - Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second.
253-
* [xarray](https://github.com/pydata/xarray) - Xarray combines the best features of NumPy and pandas for multidimensional data selection by supplementing numerical axis labels with named dimensions for more intuitive, concise, and less error-prone indexing routines.
254-
255-
256-
### Pipelines
257-
* [pdpipe](https://github.com/shaypal5/pdpipe) - Sasy pipelines for pandas DataFrames.
258-
* [SSPipe](https://sspipe.github.io/) - Python pipe (|) operator with support for DataFrames and Numpy, and Pytorch.
259-
* [pandas-ply](https://github.com/coursera/pandas-ply) - Functional data manipulation for pandas. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
260-
* [Dplython](https://github.com/dodger487/dplython) - Dplyr for Python. <img height="20" src="img/R_big.png" alt="R inspired/ported lib">
261-
* [sklearn-pandas](https://github.com/scikit-learn-contrib/sklearn-pandas) - pandas integration with sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/pandas_big.png" alt="pandas compatible">
262-
* [Dataset](https://github.com/analysiscenter/dataset) - Helps you conveniently work with random or sequential batches of your data and define data processing.
263-
* [pyjanitor](https://github.com/ericmjl/pyjanitor) - Clean APIs for data cleaning. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
264-
* [meza](https://github.com/reubano/meza) - A Python toolkit for processing tabular data.
265-
* [Prodmodel](https://github.com/prodmodel/prodmodel) - Build system for data science pipelines.
266-
* [dopanda](https://github.com/dovpanda-dev/dovpanda) - Hints and tips for using pandas in an analysis environment. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
267-
* [Hamilton](https://github.com/DAGWorks-Inc/hamilton) - A microframework for dataframe generation that applies Directed Acyclic Graphs specified by a flow of lazily evaluated Python functions.
268-
269-
### Data-centric AI
270-
* [cleanlab](https://github.com/cleanlab/cleanlab) - The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.
271-
* [snorkel](https://github.com/snorkel-team/snorkel) - A system for quickly generating training data with weak supervision.
272-
* [dataprep](https://github.com/sfu-db/dataprep) - Collect, clean, and visualize your data in Python with a few lines of code.
273-
274-
### Synthetic Data
275-
276-
* [ydata-synthetic](https://github.com/ydataai/ydata-synthetic) - A package to generate synthetic tabular and time-series data leveraging the state-of-the-art generative models. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
277-
278231
## Feature Engineering
279232

280233
### General
@@ -415,6 +368,9 @@
415368
* [Chaos Genius](https://github.com/chaos-genius/chaos_genius) - ML powered analytics engine for outlier/anomaly detection and root cause analysis
416369

417370
## Natural Language Processing
371+
* [torchtext](https://github.com/pytorch/text) - Data loaders and abstractions for text and NLP. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
372+
* [gluon-nlp](https://github.com/dmlc/gluon-nlp) - NLP made easy. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
373+
* [KerasNLP](https://github.com/keras-team/keras-nlp) - Modular Natural Language Processing workflows with Keras. <img height="20" src="img/keras_big.png" alt="Keras based/compatible">
418374
* [spaCy](https://spacy.io/) - Industrial-Strength Natural Language Processing.
419375
* [NLTK](https://github.com/nltk/nltk) - Modules, data sets, and tutorials supporting research and development in Natural Language Processing.
420376
* [CLTK](https://github.com/cltk/cltk) - The Classical Language Toolkik.
@@ -426,6 +382,7 @@
426382

427383

428384
## Computer Audition
385+
* [torchaudio](https://github.com/pytorch/audio) - An audio library for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
429386
* [librosa](https://github.com/librosa/librosa) - Python library for audio and music analysis.
430387
* [Yaafe](https://github.com/Yaafe/Yaafe) - Audio features extraction.
431388
* [aubio](https://github.com/aubio/aubio) - A library for audio and music analysis.
@@ -436,6 +393,9 @@
436393
* [madmom](https://github.com/CPJKU/madmom) - Python audio and music signal processing library.
437394

438395
## Computer Vision
396+
* [torchvision](https://github.com/pytorch/vision) - Datasets, Transforms, and Models specific to Computer Vision. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
397+
* [gluon-cv](https://github.com/dmlc/gluon-cv) - Provides implementations of the state-of-the-art deep learning models in computer vision. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
398+
* [KerasCV](https://github.com/keras-team/keras-cv) - Industry-strength Computer Vision workflows with Keras. <img height="20" src="img/keras_big.png" alt="MXNet based">
439399
* [OpenCV](https://github.com/opencv/opencv) - Open Source Computer Vision Library.
440400
* [scikit-image](https://github.com/scikit-image/scikit-image) - Image Processing SciKit (Toolbox for SciPy).
441401
* [imgaug](https://github.com/aleju/imgaug) - Image augmentation for machine learning experiments.
@@ -452,6 +412,50 @@
452412
* [scikit-posthocs](https://github.com/maximtrp/scikit-posthocs) - Pairwise Multiple Comparisons Post-hoc Tests.
453413
* [Alphalens](https://github.com/quantopian/alphalens) - Performance analysis of predictive (alpha) stock factors.
454414

415+
416+
## Data Manipulation
417+
418+
### Data Frames
419+
* [pandas](https://pandas.pydata.org/pandas-docs/stable/) - Powerful Python data analysis toolkit.
420+
* [polars](https://github.com/pola-rs/polars) - A fast multi-threaded, hybrid-out-of-core DataFrame library.
421+
* [koalas](https://github.com/databricks/koalas) - pandas API on Apache Spark. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
422+
* [Arctic](https://github.com/manahl/arctic) - High-performance datastore for time series and tick data.
423+
* [datatable](https://github.com/h2oai/datatable) - Data.table for Python. <img height="20" src="img/R_big.png" alt="R inspired/ported lib">
424+
* [pandas_profiling](https://github.com/pandas-profiling/pandas-profiling) - Create HTML profiling reports from pandas DataFrame objects
425+
* [cuDF](https://github.com/rapidsai/cudf) - GPU DataFrame Library. <img height="20" src="img/pandas_big.png" alt="pandas compatible"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
426+
* [blaze](https://github.com/blaze/blaze) - NumPy and pandas interface to Big Data. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
427+
* [pandasql](https://github.com/yhat/pandasql) - Allows you to query pandas DataFrames using SQL syntax. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
428+
* [pandas-gbq](https://github.com/pydata/pandas-gbq) - pandas Google Big Query. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
429+
* [xpandas](https://github.com/alan-turing-institute/xpandas) - Universal 1d/2d data containers with Transformers .functionality for data analysis by [The Alan Turing Institute](https://www.turing.ac.uk/).
430+
* [pysparkling](https://github.com/svenkreiss/pysparkling) - A pure Python implementation of Apache Spark's RDD and DStream interfaces. <img height="20" src="img/spark_big.png" alt="Apache Spark based">
431+
* [modin](https://github.com/modin-project/modin) - Speed up your pandas workflows by changing a single line of code. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
432+
* [swifter](https://github.com/jmcarpenter2/swifter) - A package that efficiently applies any function to a pandas dataframe or series in the fastest available manner.
433+
* [pandas-log](https://github.com/eyaltrabelsi/pandas-log) - A package that allows providing feedback about basic pandas operations and finds both business logic and performance issues.
434+
* [vaex](https://github.com/vaexio/vaex) - Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second.
435+
* [xarray](https://github.com/pydata/xarray) - Xarray combines the best features of NumPy and pandas for multidimensional data selection by supplementing numerical axis labels with named dimensions for more intuitive, concise, and less error-prone indexing routines.
436+
437+
### Pipelines
438+
* [pdpipe](https://github.com/shaypal5/pdpipe) - Sasy pipelines for pandas DataFrames.
439+
* [SSPipe](https://sspipe.github.io/) - Python pipe (|) operator with support for DataFrames and Numpy, and Pytorch.
440+
* [pandas-ply](https://github.com/coursera/pandas-ply) - Functional data manipulation for pandas. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
441+
* [Dplython](https://github.com/dodger487/dplython) - Dplyr for Python. <img height="20" src="img/R_big.png" alt="R inspired/ported lib">
442+
* [sklearn-pandas](https://github.com/scikit-learn-contrib/sklearn-pandas) - pandas integration with sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/pandas_big.png" alt="pandas compatible">
443+
* [Dataset](https://github.com/analysiscenter/dataset) - Helps you conveniently work with random or sequential batches of your data and define data processing.
444+
* [pyjanitor](https://github.com/ericmjl/pyjanitor) - Clean APIs for data cleaning. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
445+
* [meza](https://github.com/reubano/meza) - A Python toolkit for processing tabular data.
446+
* [Prodmodel](https://github.com/prodmodel/prodmodel) - Build system for data science pipelines.
447+
* [dopanda](https://github.com/dovpanda-dev/dovpanda) - Hints and tips for using pandas in an analysis environment. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
448+
* [Hamilton](https://github.com/DAGWorks-Inc/hamilton) - A microframework for dataframe generation that applies Directed Acyclic Graphs specified by a flow of lazily evaluated Python functions.
449+
450+
### Data-centric AI
451+
* [cleanlab](https://github.com/cleanlab/cleanlab) - The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.
452+
* [snorkel](https://github.com/snorkel-team/snorkel) - A system for quickly generating training data with weak supervision.
453+
* [dataprep](https://github.com/sfu-db/dataprep) - Collect, clean, and visualize your data in Python with a few lines of code.
454+
455+
### Synthetic Data
456+
457+
* [ydata-synthetic](https://github.com/ydataai/ydata-synthetic) - A package to generate synthetic tabular and time-series data leveraging the state-of-the-art generative models. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
458+
455459
## Distributed Computing
456460
* [Horovod](https://github.com/uber/horovod) - Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. <img height="20" src="img/tf_big2.png" alt="sklearn">
457461
* [PySpark](https://spark.apache.org/docs/0.9.0/python-programming-guide.html) - Exposes the Spark programming model to Python. <img height="20" src="img/spark_big.png" alt="Apache Spark based">

0 commit comments

Comments
 (0)