|
204 | 204 |
|
205 | 205 | ### Data Frames
|
206 | 206 | * [pandas](https://pandas.pydata.org/pandas-docs/stable/) - Powerful Python data analysis toolkit.
|
| 207 | +* [polars](https://github.com/pola-rs/polars) - A fast multi-threaded, hybrid-out-of-core DataFrame library. |
207 | 208 | * [pandas_profiling](https://github.com/pandas-profiling/pandas-profiling) - Create HTML profiling reports from pandas DataFrame objects
|
208 | 209 | * [cuDF](https://github.com/rapidsai/cudf) - GPU DataFrame Library. <img height="20" src="img/pandas_big.png" alt="pandas compatible"> <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
|
209 | 210 | * [blaze](https://github.com/blaze/blaze) - NumPy and pandas interface to Big Data. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
|
216 | 217 | * [koalas](https://github.com/databricks/koalas) - pandas API on Apache Spark. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
217 | 218 | * [modin](https://github.com/modin-project/modin) - Speed up your pandas workflows by changing a single line of code. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
218 | 219 | * [swifter](https://github.com/jmcarpenter2/swifter) - A package that efficiently applies any function to a pandas dataframe or series in the fastest available manner.
|
219 |
| -* [pandas_flavor](https://github.com/Zsailer/pandas_flavor) - A package that allows writing your own flavor of Pandas easily. |
220 | 220 | * [pandas-log](https://github.com/eyaltrabelsi/pandas-log) - A package that allows providing feedback about basic pandas operations and finds both business logic and performance issues.
|
221 | 221 | * [vaex](https://github.com/vaexio/vaex) - Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second.
|
222 | 222 | * [xarray](https://github.com/pydata/xarray) - Xarray combines the best features of NumPy and pandas for multidimensional data selection by supplementing numerical axis labels with named dimensions for more intuitive, concise, and less error-prone indexing routines.
|
223 |
| -* [sk-transformer](https://github.com/chrislemke/sk-transformers) - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps <img height="20" src="img/pandas_big.png" alt="pandas compatible"> |
224 |
| -* [polars](https://github.com/pola-rs/polars) - A fast multi-threaded, hybrid-out-of-core DataFrame library. |
225 | 223 |
|
226 | 224 |
|
227 | 225 | ### Pipelines
|
|
258 | 256 | * [tsfresh](https://github.com/blue-yonder/tsfresh) - Automatic extraction of relevant features from time series. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
259 | 257 | * [dirty_cat](https://github.com/dirty-cat/dirty_cat) - Machine learning on dirty tabular data (especially: string-based variables for classifcation and regression). <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
260 | 258 | * [NitroFE](https://github.com/NITRO-AI/NitroFE) - Moving window features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
| 259 | +* [sk-transformer](https://github.com/chrislemke/sk-transformers) - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps <img height="20" src="img/pandas_big.png" alt="pandas compatible"> |
| 260 | + |
261 | 261 |
|
262 | 262 | ### Feature Selection
|
263 | 263 | * [scikit-feature](https://github.com/jundongl/scikit-feature) - Feature selection repository in Python.
|
|
332 | 332 | * [mxboard](https://github.com/awslabs/mxboard) - Logging MXNet data for visualization in TensorBoard. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
|
333 | 333 |
|
334 | 334 | ## Reinforcement Learning
|
335 |
| -* [OpenAI Gym](https://github.com/openai/gym) - A toolkit for developing and comparing reinforcement learning algorithms. |
336 |
| -* [Coach](https://github.com/NervanaSystems/coach) - Easy experimentation with state-of-the-art Reinforcement Learning algorithms. |
337 |
| -* [garage](https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research. |
338 |
| -* [OpenAI Baselines](https://github.com/openai/baselines) - High-quality implementations of reinforcement learning algorithms. |
339 |
| -* [Stable Baselines](https://github.com/hill-a/stable-baselines) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. |
| 335 | +* [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) - An API standard for single-agent reinforcement learning environments, with popular reference environments and related utilities (formerly [Gym](https://github.com/openai/gym)). |
| 336 | +* [Stable Baselines3](https://github.com/DLR-RM/stable-baselines3) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. |
340 | 337 | * [RLlib](https://ray.readthedocs.io/en/latest/rllib.html) - Scalable Reinforcement Learning.
|
341 |
| -* [Horizon](https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning. |
| 338 | +* [Acme](https://github.com/google-deepmind/acme) - A library of reinforcement learning components and agents. |
| 339 | +* [Catalyst-RL](https://github.com/catalyst-team/catalyst-rl) - PyTorch framework for RL research. |
| 340 | +* [d3rlpy](https://github.com/takuseno/d3rlpy) - An offline deep reinforcement learning library. |
342 | 341 | * [TF-Agents](https://github.com/tensorflow/agents) - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
343 | 342 | * [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
344 | 343 | * [TRFL](https://github.com/deepmind/trfl) - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
345 | 344 | * [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms.
|
346 | 345 | * [keras-rl](https://github.com/keras-rl/keras-rl) - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible">
|
347 |
| -* [ChainerRL](https://github.com/chainer/chainerrl) - A deep reinforcement learning library built on top of Chainer. |
| 346 | +* [garage](https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research. |
| 347 | +* [Horizon](https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning. |
| 348 | + |
| 349 | +## Probabilistic Graphical Models |
| 350 | +* [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/gpu_big.png" alt="GPU accelerated"> |
| 351 | +* [pgmpy](https://github.com/pgmpy/pgmpy) - A python library for working with Probabilistic Graphical Models. |
| 352 | +* [pyAgrum](https://agrum.gitlab.io/) - A GRaphical Universal Modeler. |
348 | 353 |
|
349 | 354 | ## Probabilistic Methods
|
350 | 355 | * [pyro](https://github.com/uber/pyro) - A flexible, scalable deep probabilistic programming library built on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
351 |
| -* [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/gpu_big.png" alt="GPU accelerated"> |
352 | 356 | * [ZhuSuan](http://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
353 | 357 | * [PyMC](https://github.com/pymc-devs/pymc) - Bayesian Stochastic Modelling in Python.
|
354 | 358 | * [InferPy](https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
355 | 359 | * [GPflow](http://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
356 | 360 | * [PyStan](https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface).
|
357 | 361 | * [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
358 |
| -* [pgmpy](https://github.com/pgmpy/pgmpy) - A python library for working with Probabilistic Graphical Models. |
359 | 362 | * [skpro](https://github.com/alan-turing-institute/skpro) - Supervised domain-agnostic prediction framework for probabilistic modelling by [The Alan Turing Institute](https://www.turing.ac.uk/). <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
360 | 363 | * [PtStat](https://github.com/stepelu/ptstat) - Probabilistic Programming and Statistical Inference in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
361 | 364 | * [PyVarInf](https://github.com/ctallec/pyvarinf) - Bayesian Deep Learning methods with Variational Inference for PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
362 | 365 | * [emcee](https://github.com/dfm/emcee) - The Python ensemble sampling toolkit for affine-invariant MCMC.
|
363 | 366 | * [hsmmlearn](https://github.com/jvkersch/hsmmlearn) - A library for hidden semi-Markov models with explicit durations.
|
364 | 367 | * [pyhsmm](https://github.com/mattjj/pyhsmm) - Bayesian inference in HSMMs and HMMs.
|
365 | 368 | * [GPyTorch](https://github.com/cornellius-gp/gpytorch) - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
366 |
| -* [MXFusion](https://github.com/amzn/MXFusion) - Modular Probabilistic Programming on MXNet. <img height="20" src="img/mxnet_big.png" alt="MXNet based"> |
367 | 369 | * [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite) - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
368 | 370 |
|
369 | 371 | ## Genetic Programming
|
|
0 commit comments