1+ from __future__ import print_function
12import argparse
23import os
34import shutil
@@ -59,10 +60,10 @@ def main():
5960
6061 # create model
6162 if args .pretrained :
62- print ("=> using pre-trained model '{}'" .format (args .arch ))
63+ print ("=> using pre-trained model '{}'" .format (args .arch ), flush = True )
6364 model = models .__dict__ [args .arch ](pretrained = True )
6465 else :
65- print ("=> creating model '{}'" .format (args .arch ))
66+ print ("=> creating model '{}'" .format (args .arch ), flush = True )
6667 model = models .__dict__ [args .arch ]()
6768
6869 if args .arch .startswith ('alexnet' ) or args .arch .startswith ('vgg' ):
@@ -74,15 +75,16 @@ def main():
7475 # optionally resume from a checkpoint
7576 if args .resume :
7677 if os .path .isfile (args .resume ):
77- print ("=> loading checkpoint '{}'" .format (args .resume ))
78+ print ("=> loading checkpoint '{}'" .format (args .resume ), flush = True )
7879 checkpoint = torch .load (args .resume )
7980 args .start_epoch = checkpoint ['epoch' ]
8081 best_prec1 = checkpoint ['best_prec1' ]
8182 model .load_state_dict (checkpoint ['state_dict' ])
8283 print ("=> loaded checkpoint '{}' (epoch {})"
83- .format (args .evaluate , checkpoint ['epoch' ]))
84+ .format (args .evaluate , checkpoint ['epoch' ]), flush = True )
8485 else :
85- print ("=> no checkpoint found at '{}'" .format (args .resume ))
86+ print ("=> no checkpoint found at '{}'" .format (args .resume ),
87+ flush = True )
8688
8789 cudnn .benchmark = True
8890
@@ -189,7 +191,8 @@ def train(train_loader, model, criterion, optimizer, epoch):
189191 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t '
190192 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' .format (
191193 epoch , i , len (train_loader ), batch_time = batch_time ,
192- data_time = data_time , loss = losses , top1 = top1 , top5 = top5 ))
194+ data_time = data_time , loss = losses , top1 = top1 , top5 = top5 ),
195+ flush = True )
193196
194197
195198def validate (val_loader , model , criterion ):
@@ -228,10 +231,10 @@ def validate(val_loader, model, criterion):
228231 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t '
229232 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' .format (
230233 i , len (val_loader ), batch_time = batch_time , loss = losses ,
231- top1 = top1 , top5 = top5 ))
234+ top1 = top1 , top5 = top5 ), flush = True )
232235
233236 print (' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
234- .format (top1 = top1 , top5 = top5 ))
237+ .format (top1 = top1 , top5 = top5 ), flush = True )
235238
236239 return top1 .avg
237240
0 commit comments