Skip to content

Commit 4bbd72a

Browse files
authored
Update README.md
1 parent cc765d5 commit 4bbd72a

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -22,8 +22,8 @@ Pandas, Nummpy, Keras, Tensorflow
2222

2323
## 4.Model
2424
<p align="center">
25-
<img src="image/모델.png" width= 500, height = 720>
26-
</p>
25+
<img src="image/모델.png" width= 500, height = 720></p>
26+
2727
## 5.Code
2828
### Pre-processing
2929

@@ -32,16 +32,16 @@ Pandas, Nummpy, Keras, Tensorflow
3232
## 6.Result
3333
This is an prediction example of one area in Korea divided 8x10 grid. <br/>
3434
<p align="center">
35-
**next 1hour<br/>**
35+
next 1hour<br/>
3636
<img src="image/R1.png"><br/>
37-
**next 4hour<br/>**
37+
<center>next 4hour</center><br/>
3838
<img src="image/R4.png"><br/>
39-
**next 12hour<br/>**
39+
<center>next 12hour</center><br/>
4040
<img src="image/R12.png"><br/>
41-
**next 24hour<br/>**
41+
<center>next 24hour</center><br/>
4242
<img src="image/R24.png"><br/>
43-
<br/>
4443
</p>
44+
4545
## 7.Recommanded paper to follow this research
4646
1. Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., & Chi, T. (2017). Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environmental Pollution, 231, 997–1004.
4747
2. Huang, C. J., & Kuo, P. H. (2018). A deep cnn-lstm model for particulate matter (Pm2.5) forecasting in smart cities. Sensors (Switzerland), 18(7).

0 commit comments

Comments
 (0)