4242 typ = 'method' , overwrite = True ) 
4343class  CategoricalIndex (Index , accessor .PandasDelegate ):
4444 """ 
45-  Immutable Index implementing an ordered, sliceable set. CategoricalIndex 
46-  represents a sparsely populated Index with an underlying Categorical. 
45+  Index based on an underlying :class:`Categorical`. 
46+ 
47+  CategoricalIndex, like Categorical, can only take on a limited, 
48+  and usually fixed, number of possible values (`categories`). Also, 
49+  like Categorical, it might have an order, but numerical operations 
50+  (additions, divisions, ...) are not possible. 
4751
4852 Parameters 
4953 ---------- 
50-  data : array-like or Categorical, (1-dimensional) 
51-  categories : optional, array-like 
52-  categories for the CategoricalIndex 
53-  ordered : boolean, 
54-  designating if the categories are ordered 
55-  copy : bool 
56-  Make a copy of input ndarray 
57-  name : object 
58-  Name to be stored in the index 
54+  data : array-like (1-dimensional) 
55+  The values of the categorical. If `categories` are given, values not in 
56+  `categories` will be replaced with NaN. 
57+  categories : index-like, optional 
58+  The categories for the categorical. Items need to be unique. 
59+  If the categories are not given here (and also not in `dtype`), they 
60+  will be inferred from the `data`. 
61+  ordered : bool, optional 
62+  Whether or not this categorical is treated as an ordered 
63+  categorical. If not given here or in `dtype`, the resulting 
64+  categorical will be unordered. 
65+  dtype : CategoricalDtype or the string "category", optional 
66+  If :class:`CategoricalDtype`, cannot be used together with 
67+  `categories` or `ordered`. 
68+ 
69+  .. versionadded:: 0.21.0 
70+  copy : bool, default False 
71+  Make a copy of input ndarray. 
72+  name : object, optional 
73+  Name to be stored in the index. 
5974
6075 Attributes 
6176 ---------- 
@@ -75,9 +90,45 @@ class CategoricalIndex(Index, accessor.PandasDelegate):
7590 as_unordered 
7691 map 
7792
93+  Raises 
94+  ------ 
95+  ValueError 
96+  If the categories do not validate. 
97+  TypeError 
98+  If an explicit ``ordered=True`` is given but no `categories` and the 
99+  `values` are not sortable. 
100+ 
78101 See Also 
79102 -------- 
80-  Categorical, Index 
103+  Index : The base pandas Index type. 
104+  Categorical : A categorical array. 
105+  CategoricalDtype : Type for categorical data. 
106+ 
107+  Notes 
108+  ----- 
109+  See the `user guide 
110+  <http://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#categoricalindex>`_ 
111+  for more. 
112+ 
113+  Examples 
114+  -------- 
115+  >>> pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c']) 
116+  CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa 
117+ 
118+  ``CategoricalIndex`` can also be instantiated from a ``Categorical``: 
119+ 
120+  >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) 
121+  >>> pd.CategoricalIndex(c) 
122+  CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa 
123+ 
124+  Ordered ``CategoricalIndex`` can have a min and max value. 
125+ 
126+  >>> ci = pd.CategoricalIndex(['a','b','c','a','b','c'], ordered=True, 
127+  ... categories=['c', 'b', 'a']) 
128+  >>> ci 
129+  CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['c', 'b', 'a'], ordered=True, dtype='category') # noqa 
130+  >>> ci.min() 
131+  'c' 
81132 """ 
82133
83134 _typ  =  'categoricalindex' 
0 commit comments