|
| 1 | +# Electrical field due to 2 point charges |
| 2 | +# |
| 3 | +# | |
| 4 | +# q1 o |
| 5 | +# | + observation point |
| 6 | +# | |
| 7 | +# ----------------------------------------- |
| 8 | +# | |
| 9 | +# | |
| 10 | +# q2 o |
| 11 | +# | |
| 12 | +# |
| 13 | +# rq1: vector to point charge 1 |
| 14 | +# rq2: vector to point charge 2 |
| 15 | +# ro: vector to observation point |
| 16 | +# r1o: vector from point charge 1 to observation point o |
| 17 | +# r2o: vector from point charge 2 to observation point o |
| 18 | +# |
| 19 | +# ro = rq1 + r1o |
| 20 | +# => r1o = ro - rq1 |
| 21 | +# r2o = ro - rq2 |
| 22 | +# |
| 23 | +# q1: charge value of point charge 1 |
| 24 | +# q2: charge value of point charge 2 |
| 25 | +# εo: permittivity of a vacuum, |
| 26 | +# 8.854 x 10⁻¹² F/m (Farads per meter) |
| 27 | +# E(ro): electric field at observation point ro |
| 28 | +# |
| 29 | +# Electrical field at ro: |
| 30 | +# E = 1/(4*pi*εo) * (r1o * q1 / |r1o|³ + r2o * q2 / |r2o|³) |
| 31 | +# |
| 32 | +# |
| 33 | +# | x1o = xo - xq1 |
| 34 | +# | y1o = yo - yq1 |
| 35 | +# |
| 36 | +# | x2o = xo - xq2 |
| 37 | +# | y2o = yo - yq2 |
| 38 | +# |
| 39 | +# | Ex = 1/(4*pi*εo) * ( (xo - xq1) * q1 / |ro - rq1|³ + (xo - xq2) * q2 / |ro - rq2|³ ) |
| 40 | +# | Ey = 1/(4*pi*εo) * ( (yo - yq1) * q1 / |ro - rq1|³ + (yo - yq2) * q2 / |ro - rq2|³ ) |
| 41 | +# |
| 42 | +# Electrical potential |
| 43 | +# V = 1/(4*pi*εo) * ( q1 / r1o + q2 / r2o ) |
| 44 | +# V = 1/(4*pi*εo) * ( q1 / (ro - rq1) + q2 / (ro - rq2) ) |
| 45 | + |
| 46 | +import numpy as np |
| 47 | +import matplotlib.pyplot as plt |
| 48 | + |
| 49 | +# parameters |
| 50 | +d = 0.01 # distance point charges from origin |
| 51 | +L = 2*d # distance between point charges |
| 52 | +q1 = 1; q2 = -1 # value point charges [coulomb] |
| 53 | +N = 20 # number of points calculated, result arrays will be N*N |
| 54 | +epsilon = 8.854E-12 # [F/m] |
| 55 | +#k = 1/(4 * np.pi * epsilon) # physical value |
| 56 | +k = 1 # used so E is scaled with 1/(4 * np.pi * epsilon) |
| 57 | + |
| 58 | +# preparing vectors with coordinates of point charges [x, y] |
| 59 | +rq1 = np.array([0, +d / 2]) |
| 60 | +rq2 = np.array([0, -d / 2]) |
| 61 | + |
| 62 | +# generate X and Y arrays |
| 63 | +x = np.linspace(-L, L, N) |
| 64 | +y = np.linspace(-L, L, N) |
| 65 | +X,Y = np.meshgrid(x,y) |
| 66 | + |
| 67 | +# prepare arrays for x and y components of E |
| 68 | +Ex = np.zeros([N,N]) |
| 69 | +Ey = np.zeros([N,N]) |
| 70 | + |
| 71 | +# prepare array for V,V will be limted to Vmax |
| 72 | +V = np.zeros([N,N]) |
| 73 | +Vmax = 100 |
| 74 | + |
| 75 | +# function calculates x and y components of E |
| 76 | +# argument of function is vector ro with 2 coordinates |
| 77 | +# np.linalg.norm() gives the magnitude of the vector in this case |
| 78 | +def calc_E(ro): |
| 79 | + Ex = k * ( (ro[0] - rq1[0]) * q1 / np.linalg.norm(ro - rq1)**3 |
| 80 | + + (ro[0] - rq2[0]) * q2 / np.linalg.norm(ro - rq2)**3 ) |
| 81 | + Ey = k * ( (ro[1] - rq1[1]) * q1 / np.linalg.norm(ro - rq1)**3 |
| 82 | + + (ro[1] - rq2[1]) * q2 / np.linalg.norm(ro - rq2)**3 ) |
| 83 | + return Ex, Ey |
| 84 | + |
| 85 | +# function calculates V |
| 86 | +# argument is vector ro with 2 coordinates |
| 87 | +def calc_V(ro): |
| 88 | + Vt = k * ( q1 / np.linalg.norm(ro - rq1) + q2 / np.linalg.norm(ro - rq2) ) |
| 89 | + return Vt |
| 90 | + |
| 91 | +# calling calc_E() and calc_V() for each point |
| 92 | +for row in range(N): |
| 93 | + for column in range(N): |
| 94 | + ro = np.array([X[row,column], Y[row,column]]) |
| 95 | + Ex[row,column], Ey[row,column] = calc_E(ro) |
| 96 | + V[row,column] = calc_V(ro) |
| 97 | + |
| 98 | +# calculating array containing magnitude of E |
| 99 | +E = np.sqrt(Ex**2 + Ey**2) |
| 100 | + |
| 101 | +# limiting V to +-Vmax to aid contour plot |
| 102 | +V = np.clip(V, -Vmax, Vmax) |
| 103 | + |
| 104 | +# plotting |
| 105 | +plt.rcParams.update({'font.size': 15}) |
| 106 | +plt.figure(figsize=(11, 9)) |
| 107 | +plt.quiver(X, Y, Ex/E, Ey/E) |
| 108 | +plt.contour(X, Y, V, levels = 15) |
| 109 | +plt.scatter(rq1[0], rq1[1], marker = "o", color = "red") |
| 110 | +plt.scatter(rq2[0], rq2[1], marker = "o", color = "blue") |
| 111 | +plt.title("Electric field / (1/(4*pi*εo)) [V/m]\nElectric potential [V]") |
| 112 | +plt.xlabel("E/(1/(4*pi*εo)) [V/M]\nV [V]") |
| 113 | +plt.ylabel("E/(1/(4*pi*εo)) [V/M]\nV [V]") |
| 114 | +plt.show() |
| 115 | + |
| 116 | + |
| 117 | + |
| 118 | + |
| 119 | + |
0 commit comments