|
14 | 14 |
|
15 | 15 |
|
16 | 16 | def extra_args(parser): |
17 | | - parser.add_argument('--num_eigenthings', default=5, type=int, |
18 | | - help='number of eigenvals/vecs to compute') |
19 | | - parser.add_argument('--batch_size', default=128, type=int, |
20 | | - help='train set batch size') |
21 | | - parser.add_argument('--eval_batch_size', default=16, type=int, |
22 | | - help='test set batch size') |
23 | | - parser.add_argument('--momentum', default=0.0, type=float, |
24 | | - help='power iteration momentum term') |
25 | | - parser.add_argument('--num_steps', default=20, type=int, |
26 | | - help='number of power iter steps') |
27 | | - parser.add_argument('--cuda', action='store_true', |
28 | | - help='if true, use CUDA/GPUs') |
| 17 | + parser.add_argument( |
| 18 | + "--num_eigenthings", |
| 19 | + default=5, |
| 20 | + type=int, |
| 21 | + help="number of eigenvals/vecs to compute", |
| 22 | + ) |
| 23 | + parser.add_argument( |
| 24 | + "--batch_size", default=128, type=int, help="train set batch size" |
| 25 | + ) |
| 26 | + parser.add_argument( |
| 27 | + "--eval_batch_size", default=16, type=int, help="test set batch size" |
| 28 | + ) |
| 29 | + parser.add_argument( |
| 30 | + "--momentum", default=0.0, type=float, help="power iteration momentum term" |
| 31 | + ) |
| 32 | + parser.add_argument( |
| 33 | + "--num_steps", default=50, type=int, help="number of power iter steps" |
| 34 | + ) |
| 35 | + parser.add_argument("--max_samples", default=2048, type=int) |
| 36 | + parser.add_argument("--cuda", action="store_true", help="if true, use CUDA/GPUs") |
| 37 | + parser.add_argument( |
| 38 | + "--full_dataset", |
| 39 | + action="store_true", |
| 40 | + help="if true,\ |
| 41 | + loop over all batches in set for each gradient step", |
| 42 | + ) |
| 43 | + parser.add_argument("--fname", default="", type=str) |
| 44 | + parser.add_argument("--mode", type=str, choices=["power_iter", "lanczos"]) |
29 | 45 |
|
30 | 46 |
|
31 | 47 | def main(args): |
32 | | - trainloader, testloader = build_dataset('cifar10', |
33 | | - dataroot=args.dataroot, |
34 | | - batch_size=args.batch_size, |
35 | | - eval_batch_size=args.eval_batch_size, |
36 | | - num_workers=2) |
37 | | - model = build_model('ResNet18', num_classes=10) |
| 48 | + trainloader, testloader = build_dataset( |
| 49 | + "cifar10", |
| 50 | + dataroot=args.dataroot, |
| 51 | + batch_size=args.batch_size, |
| 52 | + eval_batch_size=args.eval_batch_size, |
| 53 | + num_workers=2, |
| 54 | + ) |
| 55 | + if args.fname: |
| 56 | + print("Loading model from %s" % args.fname) |
| 57 | + model = torch.load(args.fname, map_location="cpu").cuda() |
| 58 | + else: |
| 59 | + model = build_model("ResNet18", num_classes=10) |
38 | 60 | criterion = torch.nn.CrossEntropyLoss() |
39 | | - eigenvals, eigenvecs = compute_hessian_eigenthings(model, testloader, |
40 | | - criterion, |
41 | | - args.num_eigenthings, |
42 | | - args.num_steps, |
43 | | - momentum=args.momentum, |
44 | | - use_gpu=args.cuda) |
| 61 | + eigenvals, eigenvecs = compute_hessian_eigenthings( |
| 62 | + model, |
| 63 | + testloader, |
| 64 | + criterion, |
| 65 | + args.num_eigenthings, |
| 66 | + mode=args.mode, |
| 67 | + # power_iter_steps=args.num_steps, |
| 68 | + max_samples=args.max_samples, |
| 69 | + # momentum=args.momentum, |
| 70 | + full_dataset=args.full_dataset, |
| 71 | + use_gpu=args.cuda, |
| 72 | + ) |
45 | 73 | print("Eigenvecs:") |
46 | 74 | print(eigenvecs) |
47 | 75 | print("Eigenvals:") |
48 | 76 | print(eigenvals) |
49 | | - track.metric(iteration=0, eigenvals=eigenvals) |
| 77 | + # track.metric(iteration=0, eigenvals=eigenvals) |
50 | 78 |
|
51 | 79 |
|
52 | | -if __name__ == '__main__': |
| 80 | +if __name__ == "__main__": |
53 | 81 | skeletor.supply_args(extra_args) |
54 | 82 | skeletor.execute(main) |
0 commit comments