|
39 | 39 | - [Computer Vision](#computer-vision)
|
40 | 40 | - [Reinforcement Learning](#reinforcement-learning)
|
41 | 41 | - [Graph Machine Learning](#graph-machine-learning)
|
| 42 | +- [Learning-to-Rank & Recommender Systems](#learning-to-rank-&-recommender-systems) |
42 | 43 | - [Probabilistic Graphical Models](#probabilistic-graphical-models)
|
43 | 44 | - [Probabilistic Methods](#probabilistic-methods)
|
44 | 45 | - [Model Explanation](#model-explanation)
|
|
277 | 278 | * [GreatX](https://github.com/EdisonLeeeee/GreatX) - A graph reliability toolbox based on PyTorch and PyTorch Geometric (PyG). <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
278 | 279 | * [Jraph](https://github.com/google-deepmind/jraph) - A Graph Neural Network Library in Jax.
|
279 | 280 |
|
| 281 | +## Learning-to-Rank & Recommender Systems |
| 282 | +* [LightFM](https://github.com/lyst/lightfm) - A Python implementation of LightFM, a hybrid recommendation algorithm. |
| 283 | +* [Spotlight](https://maciejkula.github.io/spotlight/) - Deep recommender models using PyTorch. |
| 284 | +* [Surprise](https://github.com/NicolasHug/Surprise) - A Python scikit for building and analyzing recommender systems. |
| 285 | +* [RecBole](https://github.com/RUCAIBox/RecBole) - A unified, comprehensive and efficient recommendation library. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
| 286 | +* [allRank](https://github.com/allegro/allRank) - allRank is a framework for training learning-to-rank neural models based on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
| 287 | +* [TensorFlow Recommenders](https://github.com/tensorflow/recommenders) - A library for building recommender system models using TensorFlow. <img height="20" src="img/tf_big2.png" alt="TensorFlow"> <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 288 | +* [TensorFlow Ranking](https://github.com/tensorflow/ranking) - Learning to Rank in TensorFlow. <img height="20" src="img/tf_big2.png" alt="TensorFlow"> |
| 289 | + |
280 | 290 | ## Probabilistic Graphical Models
|
281 |
| -* [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/gpu_big.png" alt="GPU accelerated"> |
| 291 | +* [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
282 | 292 | * [pgmpy](https://github.com/pgmpy/pgmpy) - A python library for working with Probabilistic Graphical Models.
|
283 | 293 | * [pyAgrum](https://agrum.gitlab.io/) - A GRaphical Universal Modeler.
|
284 | 294 |
|
|
0 commit comments