Skip to content

Commit 970a515

Browse files
authored
Update README.md
1 parent d77ee9f commit 970a515

File tree

1 file changed

+68
-68
lines changed

1 file changed

+68
-68
lines changed

README.md

Lines changed: 68 additions & 68 deletions
Original file line numberDiff line numberDiff line change
@@ -41,11 +41,9 @@
4141
- [Graph Machine Learning](#graph-machine-learning)
4242
- [Probabilistic Graphical Models](#probabilistic-graphical-models)
4343
- [Probabilistic Methods](#probabilistic-methods)
44-
- [Data Manipulation](#data-manipulation)
45-
- [Data Frames](#data-frames)
46-
- [Pipelines](#pipelines)
47-
- [Data-centric AI](#data-centric-ai)
48-
- [Synthetic Data](#synthetic-data)
44+
- [Model Explanation](#model-explanation)
45+
- [Optimization](#optimization)
46+
- [Genetic Programming](#genetic-programming)
4947
- [Feature Engineering](#feature-engineering)
5048
- [General](#general)
5149
- [Feature Selection](#feature-selection)
@@ -55,10 +53,12 @@
5553
- [Map](#map)
5654
- [Automatic Plotting](#automatic-plotting)
5755
- [NLP](#nlp)
56+
- [Data Manipulation](#data-manipulation)
57+
- [Data Frames](#data-frames)
58+
- [Pipelines](#pipelines)
59+
- [Data-centric AI](#data-centric-ai)
60+
- [Synthetic Data](#synthetic-data)
5861
- [Deployment](#deployment)
59-
- [Model Explanation](#model-explanation)
60-
- [Genetic Programming](#genetic-programming)
61-
- [Optimization](#optimization)
6262
- [Statistics](#statistics)
6363
- [Distributed Computing](#distributed-computing)
6464
- [Experimentation](#experimentation)
@@ -280,64 +280,6 @@
280280
* [GPyTorch](https://github.com/cornellius-gp/gpytorch) - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
281281
* [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite) - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn">
282282

283-
## Feature Engineering
284-
285-
### General
286-
* [Featuretools](https://github.com/Featuretools/featuretools) - Automated feature engineering.
287-
* [Feature Engine](https://github.com/feature-engine/feature_engine) - Feature engineering package with sklearn-like functionality. <img height="20" src="img/sklearn_big.png" alt="sklearn">
288-
* [OpenFE](https://github.com/IIIS-Li-Group/OpenFE) - Automated feature generation with expert-level performance.
289-
* [skl-groups](https://github.com/dougalsutherland/skl-groups) - A scikit-learn addon to operate on set/"group"-based features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
290-
* [Feature Forge](https://github.com/machinalis/featureforge) - A set of tools for creating and testing machine learning features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
291-
* [few](https://github.com/lacava/few) - A feature engineering wrapper for sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn">
292-
* [scikit-mdr](https://github.com/EpistasisLab/scikit-mdr) - A sklearn-compatible Python implementation of Multifactor Dimensionality Reduction (MDR) for feature construction. <img height="20" src="img/sklearn_big.png" alt="sklearn">
293-
* [tsfresh](https://github.com/blue-yonder/tsfresh) - Automatic extraction of relevant features from time series. <img height="20" src="img/sklearn_big.png" alt="sklearn">
294-
* [dirty_cat](https://github.com/dirty-cat/dirty_cat) - Machine learning on dirty tabular data (especially: string-based variables for classifcation and regression). <img height="20" src="img/sklearn_big.png" alt="sklearn">
295-
* [NitroFE](https://github.com/NITRO-AI/NitroFE) - Moving window features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
296-
* [sk-transformer](https://github.com/chrislemke/sk-transformers) - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps <img height="20" src="img/pandas_big.png" alt="pandas compatible">
297-
298-
299-
### Feature Selection
300-
* [scikit-feature](https://github.com/jundongl/scikit-feature) - Feature selection repository in Python.
301-
* [boruta_py](https://github.com/scikit-learn-contrib/boruta_py) - Implementations of the Boruta all-relevant feature selection method. <img height="20" src="img/sklearn_big.png" alt="sklearn">
302-
* [BoostARoota](https://github.com/chasedehan/BoostARoota) - A fast xgboost feature selection algorithm. <img height="20" src="img/sklearn_big.png" alt="sklearn">
303-
* [scikit-rebate](https://github.com/EpistasisLab/scikit-rebate) - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
304-
* [zoofs](https://github.com/jaswinder9051998/zoofs) - A feature selection library based on evolutionary algorithms.
305-
306-
## Visualization
307-
### General Purposes
308-
* [Matplotlib](https://github.com/matplotlib/matplotlib) - Plotting with Python.
309-
* [seaborn](https://github.com/mwaskom/seaborn) - Statistical data visualization using matplotlib.
310-
* [prettyplotlib](https://github.com/olgabot/prettyplotlib) - Painlessly create beautiful matplotlib plots.
311-
* [python-ternary](https://github.com/marcharper/python-ternary) - Ternary plotting library for Python with matplotlib.
312-
* [missingno](https://github.com/ResidentMario/missingno) - Missing data visualization module for Python.
313-
* [chartify](https://github.com/spotify/chartify/) - Python library that makes it easy for data scientists to create charts.
314-
* [physt](https://github.com/janpipek/physt) - Improved histograms.
315-
### Interactive plots
316-
* [animatplot](https://github.com/t-makaro/animatplot) - A python package for animating plots built on matplotlib.
317-
* [plotly](https://plot.ly/python/) - A Python library that makes interactive and publication-quality graphs.
318-
* [Bokeh](https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python.
319-
* [Altair](https://altair-viz.github.io/) - Declarative statistical visualization library for Python. Can easily do many data transformation within the code to create graph
320-
* [bqplot](https://github.com/bqplot/bqplot) - Plotting library for IPython/Jupyter notebooks
321-
* [pyecharts](https://github.com/pyecharts/pyecharts) - Migrated from [Echarts](https://github.com/apache/echarts), a charting and visualization library, to Python's interactive visual drawing library.<img height="20" src="img/pyecharts.png" alt="pyecharts"> <img height="20" src="img/echarts.png" alt="echarts">
322-
### Map
323-
* [folium](https://python-visualization.github.io/folium/quickstart.html#Getting-Started) - Makes it easy to visualize data on an interactive open street map
324-
* [geemap](https://github.com/giswqs/geemap) - Python package for interactive mapping with Google Earth Engine (GEE)
325-
### Automatic Plotting
326-
* [HoloViews](https://github.com/ioam/holoviews) - Stop plotting your data - annotate your data and let it visualize itself.
327-
* [AutoViz](https://github.com/AutoViML/AutoViz): Visualize data automatically with 1 line of code (ideal for machine learning)
328-
* [SweetViz](https://github.com/fbdesignpro/sweetviz): Visualize and compare datasets, target values and associations, with one line of code.
329-
330-
### NLP
331-
* [pyLDAvis](https://github.com/bmabey/pyLDAvis): Visualize interactive topic model
332-
333-
334-
## Deployment
335-
* [fastapi](https://fastapi.tiangolo.com/) - Modern, fast (high-performance), a web framework for building APIs with Python
336-
* [streamlit](https://www.streamlit.io/) - Make it easy to deploy the machine learning model
337-
* [gradio](https://github.com/gradio-app/gradio) - Create UIs for your machine learning model in Python in 3 minutes.
338-
* [datapane](https://datapane.com/) - A collection of APIs to turn scripts and notebooks into interactive reports.
339-
* [binder](https://mybinder.org/) - Enable sharing and execute Jupyter Notebooks
340-
341283
## Model Explanation
342284

343285
* [dalex](https://github.com/ModelOriented/DALEX) - moDel Agnostic Language for Exploration and explanation. <img height="20" src="img/sklearn_big.png" alt="sklearn"><img height="20" src="img/R_big.png" alt="R inspired/ported lib">
@@ -368,8 +310,6 @@
368310
* [tensorboard-pytorch](https://github.com/lanpa/tensorboard-pytorch) - Tensorboard for PyTorch (and chainer, mxnet, numpy, ...).
369311
* [mxboard](https://github.com/awslabs/mxboard) - Logging MXNet data for visualization in TensorBoard. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
370312

371-
372-
373313
## Genetic Programming
374314
* [gplearn](https://github.com/trevorstephens/gplearn) - Genetic Programming in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
375315
* [DEAP](https://github.com/DEAP/deap) - Distributed Evolutionary Algorithms in Python.
@@ -402,6 +342,66 @@
402342
* [nlopt](https://github.com/stevengj/nlopt) - Library for nonlinear optimization (global and local, constrained or unconstrained).
403343
* [OR-Tools](https://developers.google.com/optimization) - An open-source software suite for optimization by Google; provides a unified programming interface to a half dozen solvers: SCIP, GLPK, GLOP, CP-SAT, CPLEX, and Gurobi.
404344

345+
## Feature Engineering
346+
347+
### General
348+
* [Featuretools](https://github.com/Featuretools/featuretools) - Automated feature engineering.
349+
* [Feature Engine](https://github.com/feature-engine/feature_engine) - Feature engineering package with sklearn-like functionality. <img height="20" src="img/sklearn_big.png" alt="sklearn">
350+
* [OpenFE](https://github.com/IIIS-Li-Group/OpenFE) - Automated feature generation with expert-level performance.
351+
* [skl-groups](https://github.com/dougalsutherland/skl-groups) - A scikit-learn addon to operate on set/"group"-based features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
352+
* [Feature Forge](https://github.com/machinalis/featureforge) - A set of tools for creating and testing machine learning features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
353+
* [few](https://github.com/lacava/few) - A feature engineering wrapper for sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn">
354+
* [scikit-mdr](https://github.com/EpistasisLab/scikit-mdr) - A sklearn-compatible Python implementation of Multifactor Dimensionality Reduction (MDR) for feature construction. <img height="20" src="img/sklearn_big.png" alt="sklearn">
355+
* [tsfresh](https://github.com/blue-yonder/tsfresh) - Automatic extraction of relevant features from time series. <img height="20" src="img/sklearn_big.png" alt="sklearn">
356+
* [dirty_cat](https://github.com/dirty-cat/dirty_cat) - Machine learning on dirty tabular data (especially: string-based variables for classifcation and regression). <img height="20" src="img/sklearn_big.png" alt="sklearn">
357+
* [NitroFE](https://github.com/NITRO-AI/NitroFE) - Moving window features. <img height="20" src="img/sklearn_big.png" alt="sklearn">
358+
* [sk-transformer](https://github.com/chrislemke/sk-transformers) - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps <img height="20" src="img/pandas_big.png" alt="pandas compatible">
359+
360+
361+
### Feature Selection
362+
* [scikit-feature](https://github.com/jundongl/scikit-feature) - Feature selection repository in Python.
363+
* [boruta_py](https://github.com/scikit-learn-contrib/boruta_py) - Implementations of the Boruta all-relevant feature selection method. <img height="20" src="img/sklearn_big.png" alt="sklearn">
364+
* [BoostARoota](https://github.com/chasedehan/BoostARoota) - A fast xgboost feature selection algorithm. <img height="20" src="img/sklearn_big.png" alt="sklearn">
365+
* [scikit-rebate](https://github.com/EpistasisLab/scikit-rebate) - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
366+
* [zoofs](https://github.com/jaswinder9051998/zoofs) - A feature selection library based on evolutionary algorithms.
367+
368+
## Visualization
369+
### General Purposes
370+
* [Matplotlib](https://github.com/matplotlib/matplotlib) - Plotting with Python.
371+
* [seaborn](https://github.com/mwaskom/seaborn) - Statistical data visualization using matplotlib.
372+
* [prettyplotlib](https://github.com/olgabot/prettyplotlib) - Painlessly create beautiful matplotlib plots.
373+
* [python-ternary](https://github.com/marcharper/python-ternary) - Ternary plotting library for Python with matplotlib.
374+
* [missingno](https://github.com/ResidentMario/missingno) - Missing data visualization module for Python.
375+
* [chartify](https://github.com/spotify/chartify/) - Python library that makes it easy for data scientists to create charts.
376+
* [physt](https://github.com/janpipek/physt) - Improved histograms.
377+
### Interactive plots
378+
* [animatplot](https://github.com/t-makaro/animatplot) - A python package for animating plots built on matplotlib.
379+
* [plotly](https://plot.ly/python/) - A Python library that makes interactive and publication-quality graphs.
380+
* [Bokeh](https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python.
381+
* [Altair](https://altair-viz.github.io/) - Declarative statistical visualization library for Python. Can easily do many data transformation within the code to create graph
382+
* [bqplot](https://github.com/bqplot/bqplot) - Plotting library for IPython/Jupyter notebooks
383+
* [pyecharts](https://github.com/pyecharts/pyecharts) - Migrated from [Echarts](https://github.com/apache/echarts), a charting and visualization library, to Python's interactive visual drawing library.<img height="20" src="img/pyecharts.png" alt="pyecharts"> <img height="20" src="img/echarts.png" alt="echarts">
384+
### Map
385+
* [folium](https://python-visualization.github.io/folium/quickstart.html#Getting-Started) - Makes it easy to visualize data on an interactive open street map
386+
* [geemap](https://github.com/giswqs/geemap) - Python package for interactive mapping with Google Earth Engine (GEE)
387+
### Automatic Plotting
388+
* [HoloViews](https://github.com/ioam/holoviews) - Stop plotting your data - annotate your data and let it visualize itself.
389+
* [AutoViz](https://github.com/AutoViML/AutoViz): Visualize data automatically with 1 line of code (ideal for machine learning)
390+
* [SweetViz](https://github.com/fbdesignpro/sweetviz): Visualize and compare datasets, target values and associations, with one line of code.
391+
392+
### NLP
393+
* [pyLDAvis](https://github.com/bmabey/pyLDAvis): Visualize interactive topic model
394+
395+
396+
## Deployment
397+
* [fastapi](https://fastapi.tiangolo.com/) - Modern, fast (high-performance), a web framework for building APIs with Python
398+
* [streamlit](https://www.streamlit.io/) - Make it easy to deploy the machine learning model
399+
* [gradio](https://github.com/gradio-app/gradio) - Create UIs for your machine learning model in Python in 3 minutes.
400+
* [datapane](https://datapane.com/) - A collection of APIs to turn scripts and notebooks into interactive reports.
401+
* [binder](https://mybinder.org/) - Enable sharing and execute Jupyter Notebooks
402+
403+
404+
405405
## Statistics
406406
* [pandas_summary](https://github.com/mouradmourafiq/pandas-summary) - Extension to pandas dataframes describe function. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
407407
* [Pandas Profiling](https://github.com/pandas-profiling/pandas-profiling) - Create HTML profiling reports from pandas DataFrame objects. <img height="20" src="img/pandas_big.png" alt="pandas compatible">

0 commit comments

Comments
 (0)