|
| 1 | +% analyzeSolvers.m |
| 2 | +% Runs timing and iteration analysis for linear solvers. |
| 3 | + |
| 4 | +function results_table = analyzeSolvers(sizes, matrix_types, methods_to_test, tol, max_iter, results_file) |
| 5 | + % Add package path |
| 6 | + addpath(genpath(pwd)); |
| 7 | + |
| 8 | + % Define which methods are iterative |
| 9 | + iterative_methods = {'Jacobi', 'GaussSeidel', 'SOR'}; |
| 10 | + |
| 11 | + results = []; % Use a cell array to accumulate results |
| 12 | + |
| 13 | + for n = sizes |
| 14 | + fprintf('Analyzing matrix size n = %d...\n', n); |
| 15 | + for m_type = matrix_types |
| 16 | + fprintf(' Matrix Type: %s...\n', m_type); |
| 17 | + |
| 18 | + % Generate matrix and vector |
| 19 | + try |
| 20 | + A = utils.generateMatrices(n, m_type); |
| 21 | + b = rand(n, 1); |
| 22 | + catch ME |
| 23 | + fprintf(' Skipping matrix generation error: %s\n', ME.message); |
| 24 | + continue; |
| 25 | + end |
| 26 | + |
| 27 | + for method_name_cell = methods_to_test |
| 28 | + method_name = method_name_cell{:}; % Get string from cell |
| 29 | + fprintf(' Testing Method: %s...\n', method_name); |
| 30 | + |
| 31 | + time_taken = NaN; |
| 32 | + iterations = NaN; % Only for iterative methods |
| 33 | + converged = true; % Assume success unless failure occurs |
| 34 | + error_msg = ''; |
| 35 | + |
| 36 | + try |
| 37 | + % Check applicability/convergence for iterative methods |
| 38 | + is_iterative = ismember(method_name, iterative_methods); |
| 39 | + can_run = true; |
| 40 | + if is_iterative |
| 41 | + % Use spectral radius check for convergence guarantee |
| 42 | + % Using omega=1.2 as a default for SOR check if needed |
| 43 | + omega_check = 1.2; |
| 44 | + if ~linearSolvers.checkConvergence(A, method_name, omega_check) |
| 45 | + warning('Skipping %s for n=%d (%s matrix): Convergence condition (spectral radius >= 1) not met.', method_name, n, m_type); |
| 46 | + can_run = false; |
| 47 | + error_msg = 'Convergence Fail'; |
| 48 | + end |
| 49 | + end |
| 50 | + |
| 51 | + if can_run |
| 52 | + tic; % Start timer |
| 53 | + switch method_name |
| 54 | + case 'GaussianElimination' |
| 55 | + x = linearSolvers.gaussianElimination(A, b); |
| 56 | + case 'GaussJordanElimination' |
| 57 | + x = linearSolvers.gaussJordanElimination(A, b); |
| 58 | + case 'LUDecomposition' |
| 59 | + x = linearSolvers.luDecomposition(A, b); |
| 60 | + case 'Jacobi' |
| 61 | + [x, iterations, final_error] = linearSolvers.jacobi(A, b, [], tol, max_iter); |
| 62 | + if final_error >= tol; converged = false; error_msg = sprintf('Did not converge (err=%e)', final_error); end |
| 63 | + case 'GaussSeidel' |
| 64 | + [x, iterations, final_error] = linearSolvers.gaussSeidel(A, b, [], tol, max_iter); |
| 65 | + if final_error >= tol; converged = false; error_msg = sprintf('Did not converge (err=%e)', final_error); end |
| 66 | + case 'SOR' |
| 67 | + omega = 1.2; % Example omega, could be optimized |
| 68 | + [x, iterations, final_error] = linearSolvers.sor(A, b, omega, [], tol, max_iter); |
| 69 | + if final_error >= tol; converged = false; error_msg = sprintf('Did not converge (err=%e)', final_error); end |
| 70 | + case 'MATLAB Backslash' |
| 71 | + x = A \ b; |
| 72 | + end |
| 73 | + time_taken = toc; % Stop timer |
| 74 | + end |
| 75 | + |
| 76 | + catch ME |
| 77 | + warning('Error running %s for n=%d (%s matrix): %s', method_name, n, m_type, ME.message); |
| 78 | + error_msg = ME.identifier; % Record error type |
| 79 | + converged = false; |
| 80 | + end |
| 81 | + |
| 82 | + % Append result |
| 83 | + results = [results; {method_name, n, m_type, time_taken, iterations, converged, error_msg}]; |
| 84 | + end % End methods loop |
| 85 | + end % End matrix types loop |
| 86 | + end % End sizes loop |
| 87 | + |
| 88 | + % Convert cell array to table |
| 89 | + results_table = cell2table(results, ... |
| 90 | + 'VariableNames', {'Method', 'Size', 'MatrixType', 'Time_s', 'Iterations', 'Converged', 'Error'}); |
| 91 | + |
| 92 | + % Save results |
| 93 | + if nargin >= 6 && ~isempty(results_file) |
| 94 | + try |
| 95 | + save(results_file, 'results_table'); |
| 96 | + fprintf('\nResults saved to %s\n', results_file); |
| 97 | + catch ME |
| 98 | + fprintf('\nError saving results: %s\n', ME.message); |
| 99 | + end |
| 100 | + end |
| 101 | +end |
0 commit comments