Skip to content

Commit 524e9ff

Browse files
committed
Update TOC and other stuff
1 parent 01e367b commit 524e9ff

File tree

1 file changed

+86
-53
lines changed

1 file changed

+86
-53
lines changed

README.md

Lines changed: 86 additions & 53 deletions
Original file line numberDiff line numberDiff line change
@@ -1,75 +1,108 @@
11
# 🔢 NumPy Workshop
22
An in-depth guide to mastering NumPy, covering fundamental to advanced array operations for data science and numerical computing.
33

4-
## 📋 Table of Contents
5-
0. [Array](./codes/00_array.ipynb)
6-
- Introduction to NumPy arrays
7-
1. [Arithmetic Operations](./codes/01_arithmetic-operations.ipynb)
8-
- Arithmetic operations
9-
- Operations between (array & scalar) and (array & array)
10-
2. [Comparative Operations](./codes/02_comparative-operations.ipynb)
11-
- Comparative operations
12-
- Operations between (array & scalar) and (array & array)
13-
3. [Index & Slice](./codes/03_index-&-slice.ipynb)
14-
- Indexing and slicing arrays
15-
- Advanced indexing techniques
16-
- Mask & Filters
17-
- Integer & Boolean array indexing
18-
4. [Axes](./codes/04_axes.ipynb)
19-
- Understanding axes in NumPy
20-
5. [Modifications](./codes/05_modifications.ipynb)
21-
6. [ndarray](./codes/06_ndarray.ipynb)
22-
7. [Array Creation](./codes/07_array-creation.ipynb)
23-
8. [Mathematics](./codes/08_mathematics.ipynb)
24-
9. [Statistics](./codes/09_statistics.ipynb)
25-
10. [Sort, Search & Count](./codes/10_sort-search-count.ipynb)
26-
11. [Logic](./codes/11_logic.ipynb)
27-
12. [Set](./codes/12_set.ipynb)
28-
13. [Linear Algebra](./codes/13_linear-algebra.ipynb)
29-
14. [Structured Array](./codes/14_structured-array.ipynb)
30-
15. [Input/Output](./codes/15_input-output.ipynb)
31-
16. [Random Generator](./codes/16_random-generator.ipynb)
32-
17. [Fourier Transform](./codes/17_fourier-transform.ipynb)
33-
18. [Efficient Computing](./codes/18_efficient-computing.ipynb)
34-
19. [Miscellaneous](./codes/19_miscellaneous.ipynb)
35-
20. [Looking Ahead](./codes/20_looking-ahead.ipynb)
4+
## 📖 Table of Contents
5+
0. **[Array](./codes/00_array.ipynb)**
6+
Introduction to NumPy arrays
7+
0. **[Arithmetic Operations](./codes/01_arithmetic-operations.ipynb)**
8+
Arithmetic operations between (array & scalar) or (array & array)
9+
0. **[Comparative Operations](./codes/02_comparative-operations.ipynb)**
10+
Comparative operations between (array & scalar) or (array & array)
11+
0. **[Index & Slice](./codes/03_index-&-slice.ipynb)**
12+
Basic and advanced indexing and slicing arrays including Mask & Filters
13+
0. **[Axes](./codes/04_axes.ipynb)**
14+
Understanding use of axes in multi-dimensional arrays combined with methods [the hardest part in NumPy for newbies in my opinion]
15+
0. **[Array Modifications](./codes/05_array-modifications.ipynb)**
16+
Techniques for updating values, appending, inserting, reshaping, concatenating, ...
17+
0. **[NdArray properties & methods](./codes/06_ndarray-members.ipynb)**
18+
Comprehensive overview of properties and methods associated with NumPy arrays.
19+
0. **[Array Creation](./codes/07_array-creation.ipynb)**
20+
Various methods to create NumPy arrays (e.g., `numpy.array`, `numpy.zeros`, etc.).
21+
0. **[Mathematics](./codes/08_mathematics.ipynb)**
22+
Mathematical functions and operations available in NumPy
23+
0. **[Statistics](./codes/09_statistics.ipynb)**
24+
Statistical functions for data analysis (mean, median, variance, etc.).
25+
0. **[Sort, Search & Count](./codes/10_sort-search-count.ipynb)**
26+
Methods for sorting, searching, and counting elements in arrays.
27+
0. **[Logic](./codes/11_logic.ipynb)**
28+
Logical operations and boolean indexing with NumPy arrays.
29+
0. **[Set](./codes/12_set.ipynb)**
30+
Set operations for array elements (union, intersection, difference).
31+
0. **[Linear Algebra](./codes/13_linear-algebra.ipynb)**
32+
Fundamental linear algebra operations using NumPy (matrix multiplication, determinants).
33+
0. **[Structured Array](./codes/14_structured-array.ipynb)**
34+
Creating and manipulating structured arrays with custom data types.
35+
0. **[Input/Output](./codes/15_input-output.ipynb)**
36+
Techniques for reading from and writing to files using NumPy.
37+
0. **[Random Generator](./codes/16_random-generator.ipynb)**
38+
Generating random numbers and distributions with NumPy's random module.
39+
0. **[Fourier Transform](./codes/17_fourier-transform.ipynb)**
40+
Understanding and applying Fourier transforms in NumPy.
41+
0. **[Efficient Computing](./codes/18_efficient-computing.ipynb)**
42+
Strategies for optimizing performance and memory usage in NumPy operations.
43+
0. **[Miscellaneous](./codes/19_miscellaneous.ipynb)**
44+
Additional topics and advanced features in NumPy.
45+
0. **[Looking Ahead](./codes/20_looking-ahead.ipynb)**
46+
Introduction to *Pandas* for data manipulation and *Matplotlib* for data visualization.
47+
48+
## 📋 Prerequisites
49+
- **Programming Fundamentals**
50+
- Proficiency in Python (data types, control structures, functions, etc.).
51+
- My Python Workshop: [github.com/mr-pylin/python-workshop](https://github.com/mr-pylin/python-workshop)
52+
- **Mathematics for Machine Learning**
53+
- Linear Algebra: Vectors, matrices, matrix operations.
54+
- [*Linear Algebra Review and Reference*](https://www.cs.cmu.edu/%7Ezkolter/course/linalg/linalg_notes.pdf) written by [Zico Kolter](https://zicokolter.com)
55+
- [*Notes on Linear Algebra*](https://webspace.maths.qmul.ac.uk/p.j.cameron/notes/linalg.pdf) written by [Peter J. Cameron](https://cameroncounts.github.io/web)
56+
- [*MATH 233 - Linear Algebra I Lecture Notes*](https://www.geneseo.edu/~aguilar/public/assets/courses/233/main_notes.pdf) written by [Cesar O. Aguilar](https://www.geneseo.edu/~aguilar/)
57+
- Probability & Statistics: Probability distributions, mean/variance, etc.
58+
- [*MATH1024: Introduction to Probability and Statistics*](https://www.sujitsahu.com/teach/2020_math1024.pdf) written by [Sujit Sahu](https://www.southampton.ac.uk/people/5wynjr/professor-sujit-sahu)
59+
60+
# ⚙️ Setup
61+
This project was developed using Python `v3.12.3`. If you encounter issues running the specified version of dependencies, consider using this specific Python version.
3662

3763
## 📦 Installing Dependencies
3864
You can install all dependencies listed in `requirements.txt` using [pip](https://pip.pypa.io/en/stable/installation/).
3965
```bash
4066
pip install -r requirements.txt
4167
```
42-
**Note:** This project was developed using Python `v3.12.3`. If you encounter issues running the dependencies or code, consider using this specific Python version.
4368

44-
## 🛠️ Usage
69+
## 🛠️ Usage Instructions
4570
- Open the root folder with [VS Code](https://code.visualstudio.com/)
4671
- **Windows/Linux**: `Ctrl + K` followed by `Ctrl + O`
4772
- **macOS**: `Cmd + K` followed by `Cmd + O`
48-
- Open `.ipynb` files using [Jupyter](https://jupyter.org/) extension integrated with VS Code
49-
- Allow Visual Studio Code to install any recommended dependencies for working with Jupyter Notebooks.
50-
- Jupyter is integrated with both [VS Code](https://code.visualstudio.com/) & [Google Colab](https://colab.research.google.com/)
51-
52-
## 🔍 Find Me
53-
Any mistakes, suggestions, or contributions? Feel free to reach out to me at:
54-
- 📍[linktr.ee/mr_pylin](https://linktr.ee/mr_pylin)
55-
56-
I look forward to connecting with you!
73+
- Open `.ipynb` files using [Jupyter extension](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter) integrated with **VS Code**
74+
- Allow **VS Code** to install any recommended dependencies for working with Jupyter Notebooks.
75+
- Note: Jupyter is integrated with both **VS Code** & **[Google Colab](https://colab.research.google.com/)**
5776

58-
## 🔗 Usefull Links
77+
# 🔗 Useful Links
5978
- **NumPy Website**:
6079
- The official website for NumPy, providing information, tutorials, and resources for the NumPy library
61-
- Link: [numpy.org](https://numpy.org/)
80+
- Official site: [numpy.org](https://numpy.org/)
6281
- **NumPy Documentation**:
6382
- Comprehensive guide and reference for all functionalities and features of the NumPy library
64-
- Link: [numpy.org/doc](https://numpy.org/doc/)
83+
- Doc: [numpy.org/doc](https://numpy.org/doc/)
6584
- **NumPy Source Code**:
66-
- Over 1500 contributers are currently working on NumPy.
85+
- Over 1500 contributors are currently working on NumPy.
6786
- Link: [github.com/numpy/numpy](https://github.com/numpy/numpy)
6887
- **Looking Ahead**:
69-
- Pandas
70-
- A powerful, open-source data analysis and manipulation library for Python
71-
- Pandas is built on top of NumPy
72-
- Link: [pandas.pydata.org/](https://pandas.pydata.org/)
73-
- MatPlotLib
88+
- **Pandas**
89+
- A powerful, open-source data analysis and manipulation library built on top of NumPy for Python
90+
- Official site: [pandas.pydata.org](https://pandas.pydata.org/)
91+
- My Pandas Workshop: [Coming Soon](https://github.com/mr-pylin/#)
92+
- **MatPlotLib**
7493
- A comprehensive library for creating static, animated, and interactive visualizations in Python
75-
- Link: [matplotlib.org](https://matplotlib.org/)
94+
- Official site: [matplotlib.org](https://matplotlib.org/)
95+
- My MatPlotLib Workshop: [Coming Soon](https://github.com/mr-pylin/#)
96+
- **PyTorch**
97+
- An open-source machine learning library for Python developed by [Meta AI](https://ai.meta.com/), used for applications such as deep learning and neural networks.
98+
- Official site: [pytorch.org](https://pytorch.org/)
99+
- My PyTorch Workshop: [github.com/mr-pylin/pytorch-workshop](https://github.com/mr-pylin/pytorch-workshop)
100+
101+
# 🔍 Find Me
102+
Any mistakes, suggestions, or contributions? Feel free to reach out to me at:
103+
- 📍[linktr.ee/mr_pylin](https://linktr.ee/mr_pylin)
104+
105+
I look forward to connecting with you! 🏃‍♂️
106+
107+
# 📄 License
108+
This repository is licensed under the **[MIT License](./LICENSE)**.

0 commit comments

Comments
 (0)