@@ -111,10 +111,10 @@ def __init__(self, layers, mini_batch_size):
111111 self .x = T .matrix ("x" )
112112 self .y = T .ivector ("y" )
113113 init_layer = self .layers [0 ]
114- init_layer .set_inpt (self .x , mini_batch_size )
114+ init_layer .set_inpt (self .x , self . mini_batch_size )
115115 for j in xrange (1 , len (self .layers )):
116116 prev_layer , layer = self .layers [j - 1 ], self .layers [j ]
117- layer .set_inpt (prev_layer .output , mini_batch_size )
117+ layer .set_inpt (prev_layer .output , self . mini_batch_size )
118118 self .output = self .layers [- 1 ].output
119119
120120 def SGD (self , training_data , epochs , mini_batch_size , eta ,
@@ -261,8 +261,7 @@ def __init__(self, n_in, n_out, activation_fn=sigmoid):
261261 # Initialize weights and biases
262262 self .w = theano .shared (
263263 np .asarray (
264- np .random .normal (
265- loc = 0.0 , scale = np .sqrt (1.0 / n_out ), size = (n_in , n_out )),
264+ np .random .normal (loc = 0.0 , scale = np .sqrt (1.0 / n_out ), size = (n_in , n_out )),
266265 dtype = theano .config .floatX ),
267266 name = 'w' , borrow = True )
268267 self .b = theano .shared (
@@ -272,9 +271,8 @@ def __init__(self, n_in, n_out, activation_fn=sigmoid):
272271 self .params = [self .w , self .b ]
273272
274273 def set_inpt (self , inpt , mini_batch_size ):
275- self .mini_batch_size = mini_batch_size
276- self .inpt = inpt .reshape ((self .mini_batch_size , self .n_in ))
277- self .output = self .activation_fn (T .dot (inpt , self .w )+ self .b )
274+ self .inpt = inpt .reshape ((mini_batch_size , self .n_in ))
275+ self .output = self .activation_fn (T .dot (self .inpt , self .w ) + self .b )
278276
279277class SoftmaxLayer ():
280278
@@ -293,9 +291,8 @@ def __init__(self, n_in, n_out):
293291 self .params = [self .w , self .b ]
294292
295293 def set_inpt (self , inpt , mini_batch_size ):
296- self .mini_batch_size = mini_batch_size
297- self .inpt = inpt .reshape ((self .mini_batch_size , self .n_in ))
298- self .output = softmax (T .dot (self .inpt , self .w )+ self .b )
294+ self .inpt = inpt .reshape ((mini_batch_size , self .n_in ))
295+ self .output = softmax (T .dot (self .inpt , self .w ) + self .b )
299296 self .y_out = T .argmax (self .output , axis = 1 )
300297
301298 def accuracy (self , y ):
@@ -307,3 +304,4 @@ def accuracy(self, y):
307304def size (data ):
308305 "Return the size of the dataset `data`."
309306 return data [0 ].get_value (borrow = True ).shape [0 ]
307+
0 commit comments