|
| 1 | + |
| 2 | +""" |
| 3 | +8 Puzzle solver using Simulated Annealing. |
| 4 | +""" |
| 5 | + |
| 6 | +# Import required libraries. |
| 7 | +import random |
| 8 | +import math |
| 9 | +import copy |
| 10 | + |
| 11 | +# Setting the random seed for same output. |
| 12 | +random.seed(42) |
| 13 | + |
| 14 | +class Solver: |
| 15 | + |
| 16 | + def __init__(self, initial_state, goal_state): |
| 17 | + """ |
| 18 | + Initialize the object. |
| 19 | + """ |
| 20 | + |
| 21 | + # Setup the class with the initial and goal states. |
| 22 | + self.initial_state = initial_state |
| 23 | + self.goal_state = goal_state |
| 24 | + |
| 25 | + def get_blank_pos(self, state): |
| 26 | + """ |
| 27 | + Get the position of the blank in the puzzle. |
| 28 | + """ |
| 29 | + |
| 30 | + for i in range(3): |
| 31 | + for j in range(3): |
| 32 | + |
| 33 | + if state[i][j] == 0: |
| 34 | + return [i, j] |
| 35 | + |
| 36 | + |
| 37 | + def get_neighbors(self, state): |
| 38 | + """ |
| 39 | + Get all the valid moves. |
| 40 | + """ |
| 41 | + |
| 42 | + # Get the blank position. |
| 43 | + blank_pos = self.get_blank_pos(state) |
| 44 | + |
| 45 | + # Top, Left, Right, and Bottom moves. |
| 46 | + positions = [ |
| 47 | + [1, 0], |
| 48 | + [0, 1], |
| 49 | + [-1, 0], |
| 50 | + [0, -1] |
| 51 | + ] |
| 52 | + |
| 53 | + # Initialize the neighbors. |
| 54 | + neighbors = [] |
| 55 | + |
| 56 | + for pos in positions: |
| 57 | + |
| 58 | + # Get the new x move. |
| 59 | + x = pos[0] + blank_pos[0] |
| 60 | + |
| 61 | + # Get the new y move. |
| 62 | + y = pos[1] + blank_pos[1] |
| 63 | + |
| 64 | + # If x and y are valid moves then add it to the neighbors list. |
| 65 | + if (x >= 0 and x < 3) and \ |
| 66 | + (y >= 0 and y < 3): |
| 67 | + |
| 68 | + neighbors.append([x, y]) |
| 69 | + |
| 70 | + return neighbors |
| 71 | + |
| 72 | + def print_state(self, state): |
| 73 | + """ |
| 74 | + Print the state of the solution. |
| 75 | + """ |
| 76 | + |
| 77 | + |
| 78 | + output = '' |
| 79 | + |
| 80 | + output += '.-------.\n' |
| 81 | + |
| 82 | + for i in range(3): |
| 83 | + |
| 84 | + output += '| ' |
| 85 | + |
| 86 | + for j in range(3): |
| 87 | + |
| 88 | + output += str(state[i][j]) + ' ' |
| 89 | + |
| 90 | + output += '|\n' |
| 91 | + |
| 92 | + output += '.-------.' |
| 93 | + |
| 94 | + print(output) |
| 95 | + |
| 96 | + # for i in range(3): |
| 97 | + |
| 98 | + # for j in range(3): |
| 99 | + |
| 100 | + # print(state[i][j], end=' ') |
| 101 | + |
| 102 | + # print('') |
| 103 | + |
| 104 | + def compute_cost(self, state): |
| 105 | + """ |
| 106 | + Computes the hamming distance i.e; number of cells that are out of place |
| 107 | + from the goal state |
| 108 | + """ |
| 109 | + |
| 110 | + cost = 0 |
| 111 | + |
| 112 | + for i in range(3): |
| 113 | + |
| 114 | + for j in range(3): |
| 115 | + |
| 116 | + if state[i][j] != self.goal_state[i][j]: |
| 117 | + |
| 118 | + # Update the cost. |
| 119 | + cost += 1 |
| 120 | + |
| 121 | + return cost |
| 122 | + |
| 123 | + def simulated_annealing(self, state): |
| 124 | + """ |
| 125 | + Use the Simulated Annealing to solve the 8-puzzle. |
| 126 | + """ |
| 127 | + |
| 128 | + # Set the initial temperature. |
| 129 | + initial_temp = 90 |
| 130 | + |
| 131 | + # Set the final temperature. |
| 132 | + final_temp = 0.01 |
| 133 | + |
| 134 | + # Set the alpha value. |
| 135 | + alpha = 0.0001 |
| 136 | + |
| 137 | + # Set the current temperature, state, solution, and best solution. |
| 138 | + current_temp = initial_temp |
| 139 | + current_state = state |
| 140 | + solution = state |
| 141 | + solution_best = state |
| 142 | + |
| 143 | + while current_temp > final_temp: |
| 144 | + |
| 145 | + # Get the blank position. |
| 146 | + blank_pos = self.get_blank_pos(current_state) |
| 147 | + |
| 148 | + # Pick the random move. |
| 149 | + neighbor = random.choice(self.get_neighbors(current_state)) |
| 150 | + |
| 151 | + # Deep copy the current state. |
| 152 | + new_state = copy.deepcopy(current_state) |
| 153 | + |
| 154 | + # Find the blanks in the current state. |
| 155 | + bp1 = blank_pos[0] |
| 156 | + bp2 = blank_pos[1] |
| 157 | + |
| 158 | + # Get the x and y of the new state. |
| 159 | + np1 = neighbor[0] |
| 160 | + np2 = neighbor[1] |
| 161 | + |
| 162 | + # Swap the blank with the new move. |
| 163 | + new_state[bp1][bp2], new_state[np1][np2] = new_state[np1][np2], new_state[bp1][bp2] |
| 164 | + |
| 165 | + # Find the cost difference with the old state and the new state. |
| 166 | + cost_diff = self.compute_cost(new_state) - self.compute_cost(current_state) |
| 167 | + |
| 168 | + if self.compute_cost(solution_best) > self.compute_cost(new_state): |
| 169 | + |
| 170 | + # If the new state is better the global best solution then update it. |
| 171 | + solution_best = new_state |
| 172 | + |
| 173 | + # If the new cost difference is greater than or eu the current cost. |
| 174 | + # |
| 175 | + # Compute the e^(-|old_cost - new_cost| / T) and if it's greater than |
| 176 | + # or equal to the the random probability then update the |
| 177 | + # current state. |
| 178 | + if random.uniform(0, 1) <= math.exp((-1 * cost_diff) / current_temp): |
| 179 | + current_state = new_state |
| 180 | + |
| 181 | + # Update the temperature. |
| 182 | + current_temp -= alpha |
| 183 | + |
| 184 | + # return the best solution. |
| 185 | + return solution_best |
| 186 | + |
| 187 | +if __name__ == '__main__': |
| 188 | + |
| 189 | + # Initial state. |
| 190 | + # initial = [ |
| 191 | + # [5, 7, 3], |
| 192 | + # [1, 6, 4], |
| 193 | + # [8, 0, 2] |
| 194 | + # ] |
| 195 | + |
| 196 | + initial = [ |
| 197 | + [1, 3, 4], |
| 198 | + [8, 0, 5], |
| 199 | + [7, 2, 6] |
| 200 | + ] |
| 201 | + |
| 202 | + # Goal state. |
| 203 | + goal = [ |
| 204 | + [1, 2, 3], |
| 205 | + [8, 0, 4], |
| 206 | + [7, 6, 5] |
| 207 | + ] |
| 208 | + |
| 209 | + # Initialze the solver. |
| 210 | + solver = Solver(initial, goal) |
| 211 | + |
| 212 | + print('The initial state:') |
| 213 | + solver.print_state(initial) |
| 214 | + |
| 215 | + print('Using simulated annealing to solve the 8-puzzle.') |
| 216 | + |
| 217 | + # Get the solution. |
| 218 | + sol = solver.simulated_annealing(initial) |
| 219 | + |
| 220 | + print('8-puzzle solved.') |
| 221 | + |
| 222 | + print('Final state:') |
| 223 | + |
| 224 | + # Perform the simulated annealing and print the best solution. |
| 225 | + solver.print_state(sol) |
| 226 | + |
| 227 | +# Output |
| 228 | +# --- |
| 229 | +# |
| 230 | +# The initial state: |
| 231 | +# .-------. |
| 232 | +# | 1 3 4 | |
| 233 | +# | 8 0 5 | |
| 234 | +# | 7 2 6 | |
| 235 | +# .-------. |
| 236 | +# Using simulated annealing to solve the 8-puzzle. |
| 237 | +# 8-puzzle solved. |
| 238 | +# Final state: |
| 239 | +# .-------. |
| 240 | +# | 1 2 3 | |
| 241 | +# | 8 0 4 | |
| 242 | +# | 7 6 5 | |
| 243 | +# .-------. |
0 commit comments