|  | 
|  | 1 | +from __future__ import annotations | 
|  | 2 | + | 
|  | 3 | +import gc | 
|  | 4 | +import time | 
|  | 5 | +import uuid | 
|  | 6 | +from typing import ( | 
|  | 7 | + Any, | 
|  | 8 | + Dict, | 
|  | 9 | + List, | 
|  | 10 | + Iterator, | 
|  | 11 | + TYPE_CHECKING, | 
|  | 12 | +) | 
|  | 13 | + | 
|  | 14 | +import torch | 
|  | 15 | + | 
|  | 16 | +from api.protocol import ChatCompletionMessageParam | 
|  | 17 | + | 
|  | 18 | +if TYPE_CHECKING: | 
|  | 19 | + from transformers import PreTrainedTokenizer, PreTrainedModel | 
|  | 20 | + | 
|  | 21 | + | 
|  | 22 | +import queue | 
|  | 23 | +from threading import Thread | 
|  | 24 | +import torchvision.transforms as T | 
|  | 25 | +import transformers | 
|  | 26 | +from torchvision.transforms.functional import InterpolationMode | 
|  | 27 | +from transformers import BitsAndBytesConfig, TextIteratorStreamer | 
|  | 28 | + | 
|  | 29 | +transformers.logging.set_verbosity_error() | 
|  | 30 | + | 
|  | 31 | +# THUDM/cogvlm2-llama3-chat-19B | 
|  | 32 | +# THUDM/cogvlm2-llama3-chinese-chat-19B | 
|  | 33 | + | 
|  | 34 | +@torch.inference_mode() | 
|  | 35 | +def generate_stream_cogvlm2( | 
|  | 36 | + model: "PreTrainedModel", | 
|  | 37 | + tokenizer: "PreTrainedTokenizer", | 
|  | 38 | + params: Dict[str, Any], | 
|  | 39 | +) -> Iterator: | 
|  | 40 | + """ | 
|  | 41 | + Generates text in a streaming manner using the ChatGLM model. | 
|  | 42 | +
 | 
|  | 43 | + Args: | 
|  | 44 | + model: The pre-trained model. | 
|  | 45 | + tokenizer: The tokenizer used for tokenizing the input. | 
|  | 46 | + params: A dictionary containing the input parameters. | 
|  | 47 | +
 | 
|  | 48 | + Yields: | 
|  | 49 | + A dictionary representing each generated text completion. | 
|  | 50 | +
 | 
|  | 51 | + """ | 
|  | 52 | + inputs = params["inputs"] | 
|  | 53 | + model_name = params.get("model", "llm") | 
|  | 54 | + | 
|  | 55 | + query, history, images, system_message = prompt_history_images_system_from_messages(inputs, img_tok='') | 
|  | 56 | + | 
|  | 57 | + input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history, images=images, template_version='chat') | 
|  | 58 | + | 
|  | 59 | + inputs = { | 
|  | 60 | + 'input_ids': input_by_model['input_ids'].unsqueeze(0).to(model.device), | 
|  | 61 | + 'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(model.device), | 
|  | 62 | + 'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(model.device), | 
|  | 63 | + 'images': [[input_by_model['images'][0].to(model.device).to(model.dtype)]] if images else None, | 
|  | 64 | + } | 
|  | 65 | + | 
|  | 66 | + new_params = dict(temperature = float(params.get("temperature", 1.0)), | 
|  | 67 | + max_new_tokens = int(params.get("max_tokens", 256)), | 
|  | 68 | + repetition_penalty = float(params.get("repetition_penalty", 1.0)), | 
|  | 69 | + top_p = float(params.get("top_p", 1.0)), | 
|  | 70 | + top_k = int(params.get("top_k", 50))) | 
|  | 71 | + | 
|  | 72 | + generation_kwargs = dict( | 
|  | 73 | + **inputs, | 
|  | 74 | + **new_params, | 
|  | 75 | + ) | 
|  | 76 | + | 
|  | 77 | + input_echo_len = 0 | 
|  | 78 | + generated_text, previous_text = "", "" | 
|  | 79 | + completion_id: str = f"cmpl-{str(uuid.uuid4())}" | 
|  | 80 | + created: int = int(time.time()) | 
|  | 81 | + for i, new_text in enumerate(threaded_streaming_generator(generate=model.generate, tokenizer=tokenizer, generation_kwargs=generation_kwargs)): | 
|  | 82 | + end = new_text.find(tokenizer.eos_token) | 
|  | 83 | + if end != -1: | 
|  | 84 | + new_text = new_text[:end] | 
|  | 85 | + | 
|  | 86 | + generated_text += new_text | 
|  | 87 | + delta_text = generated_text[len(previous_text):] | 
|  | 88 | + previous_text = generated_text | 
|  | 89 | + yield { | 
|  | 90 | + "id": completion_id, | 
|  | 91 | + "object": "text_completion", | 
|  | 92 | + "created": created, | 
|  | 93 | + "model": model_name, | 
|  | 94 | + "delta": delta_text, | 
|  | 95 | + "text": generated_text, | 
|  | 96 | + "logprobs": None, | 
|  | 97 | + "finish_reason": None, | 
|  | 98 | + "usage": { | 
|  | 99 | + "prompt_tokens": input_echo_len, | 
|  | 100 | + "completion_tokens": i, | 
|  | 101 | + "total_tokens": input_echo_len + i, | 
|  | 102 | + }, | 
|  | 103 | + } | 
|  | 104 | + | 
|  | 105 | + if end != -1: | 
|  | 106 | + break | 
|  | 107 | + | 
|  | 108 | + gc.collect() | 
|  | 109 | + torch.cuda.empty_cache() | 
|  | 110 | + | 
|  | 111 | +def prompt_history_images_system_from_messages(messages: list[ChatCompletionMessageParam], img_tok = "<image>\n"): | 
|  | 112 | + history = [] | 
|  | 113 | + images = [] | 
|  | 114 | + prompt = '' | 
|  | 115 | + system_prompt = None | 
|  | 116 | + | 
|  | 117 | + for m in messages: | 
|  | 118 | + if m['role'] == 'user': | 
|  | 119 | + p = '' | 
|  | 120 | + for c in m['content']: | 
|  | 121 | + if c['type'] == 'image_url': | 
|  | 122 | + image = url_to_image(c['image_url']['url']) | 
|  | 123 | + images.extend([image]) | 
|  | 124 | + p = img_tok + p | 
|  | 125 | + if c['type'] == 'text': | 
|  | 126 | + p += c['text'] | 
|  | 127 | + | 
|  | 128 | + prompt += p | 
|  | 129 | + elif m['role'] == 'assistant': | 
|  | 130 | + for c in m['content']: | 
|  | 131 | + if c['type'] == 'text': | 
|  | 132 | + history.extend([(prompt, c['text'])]) | 
|  | 133 | + prompt = '' | 
|  | 134 | + elif m['role'] == 'system': | 
|  | 135 | + for c in m['content']: | 
|  | 136 | + if c['type'] == 'text': | 
|  | 137 | + system_prompt = c['text'] | 
|  | 138 | + | 
|  | 139 | + return prompt, history, images, system_prompt | 
|  | 140 | + | 
|  | 141 | + | 
|  | 142 | +def url_to_image(image_url: str): | 
|  | 143 | + from PIL import Image | 
|  | 144 | + from io import BytesIO | 
|  | 145 | + | 
|  | 146 | + if image_url.startswith("data:"): | 
|  | 147 | + import base64 | 
|  | 148 | + | 
|  | 149 | + image_bytes = base64.b64decode(image_url.split(",")[1]) | 
|  | 150 | + else: | 
|  | 151 | + import urllib.request | 
|  | 152 | + | 
|  | 153 | + with urllib.request.urlopen(image_url) as f: | 
|  | 154 | + image_bytes = f.read() | 
|  | 155 | + | 
|  | 156 | + return Image.open(BytesIO(image_bytes)).convert("RGB") | 
|  | 157 | + | 
|  | 158 | + | 
|  | 159 | +def threaded_streaming_generator(generate, tokenizer, generation_kwargs): | 
|  | 160 | + streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True, timeout=60) | 
|  | 161 | + | 
|  | 162 | + generation_kwargs['streamer'] = streamer | 
|  | 163 | + | 
|  | 164 | + exq = queue.Queue() | 
|  | 165 | + | 
|  | 166 | + def wrapper(): | 
|  | 167 | + try: | 
|  | 168 | + with torch.no_grad(): | 
|  | 169 | + generate(**generation_kwargs) | 
|  | 170 | + | 
|  | 171 | + except Exception as e: | 
|  | 172 | + #logger.exception(e) | 
|  | 173 | + exq.put(e) | 
|  | 174 | + streamer.end() | 
|  | 175 | + | 
|  | 176 | + t = Thread(target=wrapper, daemon=True) | 
|  | 177 | + t.start() | 
|  | 178 | + | 
|  | 179 | + for text in streamer: | 
|  | 180 | + if text: | 
|  | 181 | + yield text | 
|  | 182 | + | 
|  | 183 | + if not exq.empty(): | 
|  | 184 | + raise exq.get_nowait() | 
0 commit comments