You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
A model written to graph the Hodgkin - Huxley Equations to understand the gating kinetics for ionic channels (primarily potassium and sodium) within the cardiac cells.
4
+
This analysis is done on a space clamped axon.
5
+
"""
6
+
7
+
importnumpyasnp
8
+
9
+
10
+
classHodgkinHuxley():
11
+
C_m=1
12
+
"""membrane capacitance, in uF/cm^2"""
13
+
g_Na=120
14
+
"""Sodium (Na) maximum conductances, in mS/cm^2"""
15
+
g_K=36
16
+
"""Postassium (K) maximum conductances, in mS/cm^2"""
17
+
g_L=0.3
18
+
"""Leak maximum conductances, in mS/cm^2"""
19
+
V_Na=115
20
+
"""Sodium (Na) Diffusion potentials, in mV"""
21
+
V_K=-12
22
+
"""Postassium (K) Diffusion potentials, in mV"""
23
+
V_L=-11
24
+
"""Leak current Diffusion potentials, in mV"""
25
+
t=np.arange(0.0, 30.0, 0.01)
26
+
""" The time to integrate over """
27
+
28
+
defalpha_m(self, V):
29
+
"""Channel gating kinetics. Functions of membrane voltage"""
30
+
return0.1*(25-V)/(np.exp((25-V) /10) -1)
31
+
defbeta_m(self, V):
32
+
"""Channel gating kinetics. Functions of membrane voltage"""
33
+
return4.0*np.exp(-(V/18.0))
34
+
35
+
defalpha_h(self, V):
36
+
"""Channel gating kinetics. Functions of membrane voltage"""
37
+
return0.07*np.exp(-(V/20.0))
38
+
defbeta_h(self, V):
39
+
"""Channel gating kinetics. Functions of membrane voltage"""
40
+
return1.0/(1.0+np.exp(-(30-V) /10.0))
41
+
42
+
defalpha_n(self, V):
43
+
"""Channel gating kinetics. Functions of membrane voltage"""
44
+
return0.01*(10-V)/(np.exp((10-V) /10.0) -1)
45
+
defbeta_n(self, V):
46
+
"""Channel gating kinetics. Functions of membrane voltage"""
47
+
return0.125*np.exp(-(V/80.0))
48
+
49
+
defn_inf(self, Vm=0.0):
50
+
""" Inflection point potassium conductance to easily write gK"""
0 commit comments