@@ -37,9 +37,9 @@ object.
3737 * :ref: `read_feather<io.feather> `
3838 * :ref: `read_sql<io.sql> `
3939 * :ref: `read_json<io.json_reader> `
40-  * :ref: `read_msgpack<io.msgpack> ` (experimental) 
40+  * :ref: `read_msgpack<io.msgpack> `
4141 * :ref: `read_html<io.read_html> `
42-  * :ref: `read_gbq<io.bigquery_reader> ` (experimental) 
42+  * :ref: `read_gbq<io.bigquery_reader> `
4343 * :ref: `read_stata<io.stata_reader> `
4444 * :ref: `read_sas<io.sas_reader> `
4545 * :ref: `read_clipboard<io.clipboard> `
@@ -53,9 +53,9 @@ The corresponding ``writer`` functions are object methods that are accessed like
5353 * :ref: `to_feather<io.feather> `
5454 * :ref: `to_sql<io.sql> `
5555 * :ref: `to_json<io.json_writer> `
56-  * :ref: `to_msgpack<io.msgpack> ` (experimental) 
56+  * :ref: `to_msgpack<io.msgpack> `
5757 * :ref: `to_html<io.html> `
58-  * :ref: `to_gbq<io.bigquery_writer> ` (experimental) 
58+  * :ref: `to_gbq<io.bigquery_writer> `
5959 * :ref: `to_stata<io.stata_writer> `
6060 * :ref: `to_clipboard<io.clipboard> `
6161 * :ref: `to_pickle<io.pickle> `
@@ -428,8 +428,8 @@ worth trying.
428428 :okwarning: 
429429
430430 df =  pd.DataFrame({' col_1' list (range (500000 )) +  [' a' ' b' +  list (range (500000 ))}) 
431-  df.to_csv(' foo'  
432-  mixed_df =  pd.read_csv(' foo'  
431+  df.to_csv(' foo.csv '  
432+  mixed_df =  pd.read_csv(' foo.csv '  
433433 mixed_df[' col_1' type ).value_counts() 
434434 mixed_df[' col_1'  
435435
@@ -438,6 +438,11 @@ worth trying.
438438 data that was read in. It is important to note that the overall column will be
439439 marked with a ``dtype `` of ``object ``, which is used for columns with mixed dtypes.
440440
441+ .. ipython :: python 
442+  :suppress: 
443+ 
444+  os.remove(' foo.csv'  
445+ 
441446io.categorical :
442447
443448Specifying Categorical dtype
@@ -570,6 +575,7 @@ The ``usecols`` argument can also be used to specify which columns not to
570575use in the final result:
571576
572577.. ipython :: python 
578+ 
573579 pd.read_csv(StringIO(data), usecols = lambda  x : x not  in  [' a' ' c'  
574580
575581
@@ -730,6 +736,13 @@ input text data into ``datetime`` objects.
730736
731737The simplest case is to just pass in ``parse_dates=True ``:
732738
739+ .. ipython :: python 
740+  :suppress: 
741+ 
742+  f =  open (' foo.csv' ' w'  
743+  f.write(' date,A,B,C\n 20090101,a,1,2\n 20090102,b,3,4\n 20090103,c,4,5'  
744+  f.close() 
745+ 
733746ipython :: python 
734747
735748 #  Use a column as an index, and parse it as dates. 
@@ -2826,8 +2839,8 @@ any pickled pandas object (or any other pickled object) from file:
28262839
28272840.. _io.msgpack :
28282841
2829- msgpack (experimental) 
2830- ----------------------  
2842+ msgpack
2843+ ------- 
28312844
28322845.. versionadded :: 0.13.0 
28332846
@@ -4547,8 +4560,8 @@ And then issue the following queries:
45474560
45484561io.bigquery :
45494562
4550- Google BigQuery (Experimental) 
4551- ------------------------------  
4563+ Google BigQuery
4564+ --------------- 
45524565
45534566.. versionadded :: 0.13.0 
45544567
0 commit comments