|
24 | 24 |
|
25 | 25 | [gpu]: https://raw.githubusercontent.com/krzjoa/awesome-python-datascience/master/img/gpu.png 'GPU accelerated' |
26 | 26 |
|
27 | | -[sp]: https://raw.githubusercontent.com/krzjoa/awesome-python-datascience/master/img/spark.png 'Apache Spark based' |
28 | | - |
29 | | -[amd]: https://raw.githubusercontent.com/krzjoa/awesome-python-datascience/master/img/amd.png 'possible to run on AMD' |
30 | | - |
31 | 27 | ## Contents |
32 | 28 | * [Machine Learning](#ml) |
33 | 29 | * [Deep Learning](#dl) |
|
61 | 57 | * [xLearn](https://github.com/aksnzhy/xlearn) - High Performance, Easy-to-use, and Scalable Machine Learning Package. |
62 | 58 | * [cuML](https://github.com/rapidsai/cuml) - RAPIDS Machine Learning Library. <img height="20" src="img/sklearn_big.png" alt="sklearn"> ![alt text][gpu] |
63 | 59 | * [modAL](https://github.com/cosmic-cortex/modAL) - Modular active learning framework for Python3. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
64 | | -* [Sparkit-learn](https://github.com/lensacom/sparkit-learn) - PySpark + scikit-learn = Sparkit-learn. <img height="20" src="img/sklearn_big.png" alt="sklearn"> ![alt text][sp] |
| 60 | +* [Sparkit-learn](https://github.com/lensacom/sparkit-learn) - PySpark + scikit-learn = Sparkit-learn. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/spark_big.png" alt="Apache Spark based"> |
65 | 61 | * [mlpack](https://github.com/mlpack/mlpack) - A scalable C++ machine learning library (Python bindings). |
66 | 62 | * [dlib](https://github.com/davisking/dlib) - Toolkit for making real world machine learning and data analysis applications in C++ (Python bindings). |
67 | 63 | * [MLxtend](https://github.com/rasbt/mlxtend) - Extension and helper modules for Python's data analysis and machine learning libraries. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
|
155 | 151 | * [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
156 | 152 | * [tensorpack](https://github.com/ppwwyyxx/tensorpack) - A Neural Net Training Interface on TensorFlow <img height="20" src="img/tf_big2.png" alt="sklearn"> |
157 | 153 | * [Polyaxon](https://github.com/polyaxon/polyaxon) - A platform that helps you build, manage and monitor deep learning models. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
158 | | -* [NeuPy](https://github.com/itdxer/neupy) - NeuPy is a Python library for Artificial Neural Networks and Deep Learning (previously: <img height="20" src="img/theano_big.png" alt="sklearn">). <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 154 | +* [NeuPy](https://github.com/itdxer/neupy) - NeuPy is a Python library for Artificial Neural Networks and Deep Learning (previously: <img height="20" src="img/theano_big.png" alt="Theano compatible">). <img height="20" src="img/tf_big2.png" alt="sklearn"> |
159 | 155 | * [tfdeploy](https://github.com/riga/tfdeploy) - Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
160 | | -* [tensorflow-upstream](https://github.com/ROCmSoftwarePlatform/tensorflow-upstream) - TensorFlow ROCm port. <img height="20" src="img/tf_big2.png" alt="sklearn"> ![alt text][amd] |
| 156 | +* [tensorflow-upstream](https://github.com/ROCmSoftwarePlatform/tensorflow-upstream) - TensorFlow ROCm port. <img height="20" src="img/tf_big2.png" alt="sklearn"> <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU"> |
161 | 157 | * [TensorFlow Fold](https://github.com/tensorflow/fold) - Deep learning with dynamic computation graphs in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
162 | 158 | * [tensorlm](https://github.com/batzner/tensorlm) - Wrapper library for text generation / language models at char and word level with RNN. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
163 | 159 | * [TensorLight](https://github.com/bsautermeister/tensorlight) - A high-level framework for TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
|
182 | 178 | * [gluon-cv](https://github.com/dmlc/gluon-cv) - Provides implementations of the state-of-the-art deep learning models in computer vision. ![alt text][mx] |
183 | 179 | * [gluon-nlp](https://github.com/dmlc/gluon-nlp) - NLP made easy. ![alt text][mx] |
184 | 180 | * [Xfer](https://github.com/amzn/xfer) - Transfer Learning library for Deep Neural Networks. ![alt text][mx] |
185 | | -* [MXNet](https://github.com/ROCmSoftwarePlatform/mxnet) - HIP Port of MXNet. ![alt text][mx] ![alt text][amd] |
| 181 | +* [MXNet](https://github.com/ROCmSoftwarePlatform/mxnet) - HIP Port of MXNet. ![alt text][mx] <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU"> |
186 | 182 |
|
187 | 183 | <!--a name="dl-cntk"></a--> |
188 | 184 | <a name="dl-chainer"></a> |
|
195 | 191 | <a name="dl-theano"></a> |
196 | 192 | ### Theano |
197 | 193 | **WARNING: Theano development has been stopped** |
198 | | -* [Theano](https://github.com/Theano/Theano) - A Python library that allows you to define, optimize, and evaluate mathematical expressions.<img height="20" src="img/theano_big.png" alt="sklearn"> |
199 | | -* [Lasagne](https://github.com/Lasagne/Lasagne) - Lightweight library to build and train neural networks in Theano. <img height="20" src="img/theano_big.png" alt="sklearn"> |
200 | | -* [nolearn](https://github.com/dnouri/nolearn) - A scikit-learn compatible neural network library (mainly for Lasagne). <img height="20" src="img/theano_big.png" alt="sklearn"> <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
201 | | -* [Blocks](https://github.com/mila-udem/blocks) - A Theano framework for building and training neural networks. <img height="20" src="img/theano_big.png" alt="sklearn"> |
202 | | -* [scikit-neuralnetwork](https://github.com/aigamedev/scikit-neuralnetwork) - Deep neural networks without the learning cliff. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/theano_big.png" alt="sklearn"> |
203 | | -* [platoon](https://github.com/mila-udem/platoon) - Multi-GPU mini-framework for Theano. <img height="20" src="img/theano_big.png" alt="sklearn"> |
204 | | -* [Theano-MPI](https://github.com/uoguelph-mlrg/Theano-MPI) - MPI Parallel framework for training deep learning models built in Theano. <img height="20" src="img/theano_big.png" alt="sklearn"> |
| 194 | +* [Theano](https://github.com/Theano/Theano) - A Python library that allows you to define, optimize, and evaluate mathematical expressions.<img height="20" src="img/theano_big.png" alt="Theano compatible"> |
| 195 | +* [Lasagne](https://github.com/Lasagne/Lasagne) - Lightweight library to build and train neural networks in Theano. <img height="20" src="img/theano_big.png" alt="Theano compatible"> |
| 196 | +* [nolearn](https://github.com/dnouri/nolearn) - A scikit-learn compatible neural network library (mainly for Lasagne). <img height="20" src="img/theano_big.png" alt="Theano compatible"> <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 197 | +* [Blocks](https://github.com/mila-udem/blocks) - A Theano framework for building and training neural networks. <img height="20" src="img/theano_big.png" alt="Theano compatible"> |
| 198 | +* [scikit-neuralnetwork](https://github.com/aigamedev/scikit-neuralnetwork) - Deep neural networks without the learning cliff. <img height="20" src="img/sklearn_big.png" alt="sklearn"> <img height="20" src="img/theano_big.png" alt="Theano compatible"> |
| 199 | +* [platoon](https://github.com/mila-udem/platoon) - Multi-GPU mini-framework for Theano. <img height="20" src="img/theano_big.png" alt="Theano compatible"> |
| 200 | +* [Theano-MPI](https://github.com/uoguelph-mlrg/Theano-MPI) - MPI Parallel framework for training deep learning models built in Theano. <img height="20" src="img/theano_big.png" alt="Theano compatible"> |
205 | 201 |
|
206 | 202 | <a name="dl-others"></a> |
207 | 203 | ### Others |
|
213 | 209 | * [nnabla](https://github.com/sony/nnabla) - Neural Network Libraries by Sony. |
214 | 210 | * [Caffe](https://github.com/BVLC/caffe) - A fast open framework for deep learning. |
215 | 211 | * [Caffe2](https://github.com/pytorch/pytorch/tree/master/caffe2) - A lightweight, modular, and scalable deep learning framework (now a part of PyTorch). |
216 | | -* [hipCaffe](https://github.com/ROCmSoftwarePlatform/hipCaffe) - The HIP port of Caffe. ![alt text][amd] |
| 212 | +* [hipCaffe](https://github.com/ROCmSoftwarePlatform/hipCaffe) - The HIP port of Caffe. <img height="20" src="img/amd_big.png" alt="Possible to run on AMD GPU"> |
217 | 213 |
|
218 | 214 | <a name="data-man"></a> |
219 | 215 | ## Data Manipulation |
|
226 | 222 | * [pandasql](https://github.com/yhat/pandasql) - Allows you to query pandas DataFrames using SQL syntax. <img height="20" src="img/pandas_big.png" alt="pandas compatible"> |
227 | 223 | * [pandas-gbq](https://github.com/pydata/pandas-gbq) - pandas Google Big Query. <img height="20" src="img/pandas_big.png" alt="pandas compatible"> |
228 | 224 | * [xpandas](https://github.com/alan-turing-institute/xpandas) - Universal 1d/2d data containers with Transformers .functionality for data analysis by [The Alan Turing Institute](https://www.turing.ac.uk/). |
229 | | -* [pysparkling](https://github.com/svenkreiss/pysparkling) - A pure Python implementation of Apache Spark's RDD and DStream interfaces. ![alt text][sp] |
| 225 | +* [pysparkling](https://github.com/svenkreiss/pysparkling) - A pure Python implementation of Apache Spark's RDD and DStream interfaces. <img height="20" src="img/spark_big.png" alt="Apache Spark based"> |
230 | 226 | * [Arctic](https://github.com/manahl/arctic) - High performance datastore for time series and tick data. |
231 | 227 | * [datatable](https://github.com/h2oai/datatable) - Data.table for Python. ![alt text][r] |
232 | 228 | * [koalas](https://github.com/databricks/koalas) - pandas API on Apache Spark. <img height="20" src="img/pandas_big.png" alt="pandas compatible"> |
|
311 | 307 | <a name="dist"></a> |
312 | 308 | ## Distributed Computing |
313 | 309 | * [Horovod](https://github.com/uber/horovod) - Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
314 | | -* [PySpark](https://spark.apache.org/docs/0.9.0/python-programming-guide.html) - Exposes the Spark programming model to Python. ![alt text][sp] |
| 310 | +* [PySpark](https://spark.apache.org/docs/0.9.0/python-programming-guide.html) - Exposes the Spark programming model to Python. <img height="20" src="img/spark_big.png" alt="Apache Spark based"> |
315 | 311 | * [Veles](https://github.com/Samsung/veles) - Distributed machine learning platform. |
316 | 312 | * [Jubatus](https://github.com/jubatus/jubatus) - Framework and Library for Distributed Online Machine Learning. |
317 | 313 | * [DMTK](https://github.com/Microsoft/DMTK) - Microsoft Distributed Machine Learning Toolkit. |
|
325 | 321 | * [pyro](https://github.com/uber/pyro) - A flexible, scalable deep probabilistic programming library built on PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible"> |
326 | 322 | * [ZhuSuan](http://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
327 | 323 | * [PyMC](https://github.com/pymc-devs/pymc) - Bayesian Stochastic Modelling in Python. |
328 | | -* [PyMC3](http://docs.pymc.io/) - Python package for Bayesian statistical modeling and Probabilistic Machine Learning. <img height="20" src="img/theano_big.png" alt="sklearn"> |
| 324 | +* [PyMC3](http://docs.pymc.io/) - Python package for Bayesian statistical modeling and Probabilistic Machine Learning. <img height="20" src="img/theano_big.png" alt="Theano compatible"> |
329 | 325 | * [sampled](https://github.com/ColCarroll/sampled) - Decorator for reusable models in PyMC3. |
330 | 326 | * [Edward](http://edwardlib.org/) - A library for probabilistic modeling, inference, and criticism. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
331 | 327 | * [InferPy](https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
332 | 328 | * [GPflow](http://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
333 | 329 | * [PyStan](https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface). |
334 | | -* [gelato](https://github.com/ferrine/gelato) - Bayesian dessert for Lasagne. <img height="20" src="img/theano_big.png" alt="sklearn"> |
| 330 | +* [gelato](https://github.com/ferrine/gelato) - Bayesian dessert for Lasagne. <img height="20" src="img/theano_big.png" alt="Theano compatible"> |
335 | 331 | * [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
336 | 332 | * [skggm](https://github.com/skggm/skggm) - Estimation of general graphical models. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
337 | 333 | * [pgmpy](https://github.com/pgmpy/pgmpy) - A python library for working with Probabilistic Graphical Models. |
|
0 commit comments