Skip to content

joowani/binarytree

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Binarytree: Python Library for Studying Binary Trees

Build CodeQL codecov PyPI version GitHub license Python version

Are you studying binary trees for your next exam, assignment or technical interview?

Binarytree is Python library which lets you generate, visualize, inspect and manipulate binary trees. Skip the tedious work of setting up test data, and dive straight into practising your algorithms! Heaps and BSTs (binary search trees) are also supported.

New in version 6.0.0: You can now use binarytree with Graphviz and Jupyter Notebooks (documentation):

Requirements

Python 3.6+

Installation

Install via pip:

pip install binarytree

For conda users:

conda install binarytree -c conda-forge

Getting Started

Binarytree uses the following class to represent a node:

class Node: def __init__(self, value, left=None, right=None): self.value = value # The node value (integer) self.left = left # Left child self.right = right # Right child

Generate and pretty-print various types of binary trees:

from binarytree import tree, bst, heap # Generate a random binary tree and return its root node my_tree = tree(height=3, is_perfect=False) # Generate a random BST and return its root node my_bst = bst(height=3, is_perfect=True) # Generate a random max heap and return its root node my_heap = heap(height=3, is_max=True, is_perfect=False) # Pretty-print the trees in stdout print(my_tree) # # _______1_____ # / \ # 4__ ___3 # / \ / \ # 0 9 13 14 # / \ \ # 7 10 2 # print(my_bst) # # ______7_______ # / \ # __3__ ___11___ # / \ / \ # 1 5 9 _13 # / \ / \ / \ / \ # 0 2 4 6 8 10 12 14 # print(my_heap) # # _____14__ # / \ # ____13__ 9 # / \ / \ # 12 7 3 8 # / \ / # 0 10 6 #

Build your own trees:

from binarytree import Node root = Node(1) root.left = Node(2) root.right = Node(3) root.left.right = Node(4) print(root) # # __1 # / \ # 2 3 # \ # 4 #

Inspect tree properties:

from binarytree import Node root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) print(root) # # __1 # / \ # 2 3 # / \ # 4 5 # assert root.height == 2 assert root.is_balanced is True assert root.is_bst is False assert root.is_complete is True assert root.is_max_heap is False assert root.is_min_heap is True assert root.is_perfect is False assert root.is_strict is True assert root.leaf_count == 3 assert root.max_leaf_depth == 2 assert root.max_node_value == 5 assert root.min_leaf_depth == 1 assert root.min_node_value == 1 assert root.size == 5 # See all properties at once: assert root.properties == { 'height': 2, 'is_balanced': True, 'is_bst': False, 'is_complete': True, 'is_max_heap': False, 'is_min_heap': True, 'is_perfect': False, 'is_strict': True, 'leaf_count': 3, 'max_leaf_depth': 2, 'max_node_value': 5, 'min_leaf_depth': 1, 'min_node_value': 1, 'size': 5 } print(root.leaves) # [Node(3), Node(4), Node(5)] print(root.levels) # [[Node(1)], [Node(2), Node(3)], [Node(4), Node(5)]]

Use level-order (breadth-first) indexes to manipulate nodes:

from binarytree import Node root = Node(1) # index: 0, value: 1 root.left = Node(2) # index: 1, value: 2 root.right = Node(3) # index: 2, value: 3 root.left.right = Node(4) # index: 4, value: 4 root.left.right.left = Node(5) # index: 9, value: 5 print(root) # # ____1 # / \ # 2__ 3 # \ # 4 # / # 5 # root.pprint(index=True) # # _________0-1_ # / \ # 1-2_____ 2-3 # \ # _4-4 # / # 9-5 # print(root[9]) # Node(5) # Replace the node/subtree at index 4 root[4] = Node(6, left=Node(7), right=Node(8)) root.pprint(index=True) # # ______________0-1_ # / \ # 1-2_____ 2-3 # \ # _4-6_ # / \ # 9-7 10-8 # # Delete the node/subtree at index 1 del root[1] root.pprint(index=True) # # 0-1_ # \ # 2-3

Traverse trees using different algorithms:

from binarytree import Node root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) print(root) # # __1 # / \ # 2 3 # / \ # 4 5 # print(root.inorder) # [Node(4), Node(2), Node(5), Node(1), Node(3)] print(root.preorder) # [Node(1), Node(2), Node(4), Node(5), Node(3)] print(root.postorder) # [Node(4), Node(5), Node(2), Node(3), Node(1)] print(root.levelorder) # [Node(1), Node(2), Node(3), Node(4), Node(5)] print(list(root)) # Equivalent to root.levelorder # [Node(1), Node(2), Node(3), Node(4), Node(5)]

Convert to list representations:

from binarytree import build # Build a tree from list representation values = [7, 3, 2, 6, 9, None, 1, 5, 8] root = build(values) print(root) # # __7 # / \ # __3 2 # / \ \ # 6 9 1 # / \ # 5 8 # # Go back to list representation print(root.values) # [7, 3, 2, 6, 9, None, 1, 5, 8]

Check out the documentation for more details.

Contributing

Set up dev environment:

cd ~/your/binarytree/clone # Activate venv if you have one (recommended) pip install -e .[dev] # Install dev dependencies (black, mypy, pre-commit etc.) pre-commit install # Install git pre-commit hooks

Run unit tests with coverage:

py.test --cov=binarytree --cov-report=html