|
| 1 | +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +#include "paddle/fluid/operators/optimizers/merged_momentum_op.h" |
| 16 | + |
| 17 | +#include "paddle/fluid/platform/device/npu/npu_op_runner.h" |
| 18 | + |
| 19 | +namespace paddle { |
| 20 | +namespace operators { |
| 21 | + |
| 22 | +template <typename T> |
| 23 | +class NPUMergedMomentumOpKernel : public framework::OpKernel<T> { |
| 24 | + public: |
| 25 | + void Compute(const framework::ExecutionContext& ctx) const override { |
| 26 | + auto params = ctx.MultiInput<framework::Tensor>("Param"); |
| 27 | + auto params_out = ctx.MultiOutput<framework::Tensor>("ParamOut"); |
| 28 | + size_t n = params.size(); |
| 29 | + PADDLE_ENFORCE_EQ(n, params_out.size(), |
| 30 | + platform::errors::InvalidArgument( |
| 31 | + "The size of Output(ParamOut) must be equal to " |
| 32 | + "Input(Param), but got the size of Output(ParamOut) " |
| 33 | + "is %d, the size of Input(Param) is %d.", |
| 34 | + params_out.size(), n)); |
| 35 | + for (size_t i = 0; i < n; ++i) { |
| 36 | + PADDLE_ENFORCE_EQ(params[i], params_out[i], |
| 37 | + platform::errors::InvalidArgument( |
| 38 | + "The size of Input(Param) and Output(ParamOut) " |
| 39 | + "must be the same Tensors.")); |
| 40 | + } |
| 41 | + |
| 42 | + auto grads = ctx.MultiInput<framework::Tensor>("Grad"); |
| 43 | + PADDLE_ENFORCE_EQ( |
| 44 | + n, grads.size(), |
| 45 | + platform::errors::InvalidArgument( |
| 46 | + "The size of Input(Grad) must be equal to Input(Param), but got " |
| 47 | + "the size of Input(Grad) is %d, the size of Input(Param) is %d.", |
| 48 | + grads.size(), n)); |
| 49 | + |
| 50 | + auto velocitys = ctx.MultiInput<framework::Tensor>("Velocity"); |
| 51 | + PADDLE_ENFORCE_EQ(n, velocitys.size(), |
| 52 | + platform::errors::InvalidArgument( |
| 53 | + "The size of Input(Velocity) must be equal to " |
| 54 | + "Input(Param), but got the size of Input(Velocity) " |
| 55 | + "is %d, the size of Input(Param) is %d.", |
| 56 | + velocitys.size(), n)); |
| 57 | + |
| 58 | + auto velocitys_out = ctx.MultiOutput<framework::Tensor>("VelocityOut"); |
| 59 | + PADDLE_ENFORCE_EQ( |
| 60 | + n, velocitys_out.size(), |
| 61 | + platform::errors::InvalidArgument( |
| 62 | + "The size of Output(VelocityOut) must be " |
| 63 | + "equal to Input(Param), but got the size of Output(VelocityOut) is " |
| 64 | + "%d, the size of Input(Param) is %d.", |
| 65 | + velocitys_out.size(), n)); |
| 66 | + for (size_t i = 0; i < n; ++i) { |
| 67 | + PADDLE_ENFORCE_EQ(velocitys[i], velocitys_out[i], |
| 68 | + platform::errors::InvalidArgument( |
| 69 | + "Input(Velocity) and Output(VelocityOut) must be " |
| 70 | + "the same Tensors.")); |
| 71 | + } |
| 72 | + |
| 73 | + T mu = static_cast<T>(ctx.Attr<float>("mu")); |
| 74 | + auto lrs = ctx.MultiInput<framework::Tensor>("LearningRate"); |
| 75 | + if (lrs.size() != 1) { |
| 76 | + PADDLE_ENFORCE_EQ( |
| 77 | + n, lrs.size(), |
| 78 | + platform::errors::InvalidArgument( |
| 79 | + "If the size of Input(LearningRate) is not 1, the size of " |
| 80 | + "Input(LearningRate) must be " |
| 81 | + "equal to Input(Param), but got the size of Input(LearningRate) " |
| 82 | + "is %d, the size of Input(Param) is %d.", |
| 83 | + lrs.size(), n)); |
| 84 | + } |
| 85 | + auto use_nesterov = ctx.Attr<bool>("use_nesterov"); |
| 86 | + auto regularization_methods = |
| 87 | + ctx.Attr<std::vector<std::string>>("regularization_method"); |
| 88 | + auto regularization_coeffs = |
| 89 | + ctx.Attr<std::vector<float>>("regularization_coeff"); |
| 90 | + if (regularization_methods.size() != 0) { |
| 91 | + PADDLE_ENFORCE_EQ( |
| 92 | + n, regularization_methods.size(), |
| 93 | + platform::errors::InvalidArgument( |
| 94 | + "The size of Attr(regularization_method) must be equal " |
| 95 | + "to Input(Param), but got the size of " |
| 96 | + "Attr(regularization_method) is %d, the size of Input(Param) is " |
| 97 | + "%d.", |
| 98 | + regularization_methods.size(), n)); |
| 99 | + PADDLE_ENFORCE_EQ( |
| 100 | + n, regularization_coeffs.size(), |
| 101 | + platform::errors::InvalidArgument( |
| 102 | + "The size of Attr(regularization_coeff) must be equal " |
| 103 | + "to Input(Param), but got the size of Attr(regularization_coeff) " |
| 104 | + "is %d, the size of Input(Param) is %d.", |
| 105 | + regularization_coeffs.size(), n)); |
| 106 | + } |
| 107 | + |
| 108 | + VLOG(5) << "use_nesterov: " << use_nesterov |
| 109 | + << ", regularization_methods.size(): " |
| 110 | + << regularization_methods.size() |
| 111 | + << ", regularization_coeffs.size(): " |
| 112 | + << regularization_coeffs.size(); |
| 113 | + |
| 114 | + auto& dev_ctx = ctx.template device_context<platform::NPUDeviceContext>(); |
| 115 | + |
| 116 | + Tensor mu_tensor; |
| 117 | + mu_tensor.mutable_data<T>(phi::make_ddim({1}), ctx.GetPlace()); |
| 118 | + FillNpuTensorWithConstant<T>(&mu_tensor, mu); |
| 119 | + |
| 120 | + for (size_t idx = 0; idx < n; ++idx) { |
| 121 | + RegularizationType regularization_flag = |
| 122 | + regularization_methods.size() > 0 && |
| 123 | + regularization_methods[idx] == "l2_decay" |
| 124 | + ? RegularizationType::kL2DECAY |
| 125 | + : RegularizationType::kNONE; |
| 126 | + float regularization_coeff = 0.0; |
| 127 | + if (regularization_coeffs.size() != 0) { |
| 128 | + regularization_coeff = regularization_coeffs[idx]; |
| 129 | + } |
| 130 | + |
| 131 | + auto learning_rate = lrs.size() > 1 ? lrs[idx] : lrs[0]; |
| 132 | + auto param = params[idx]; |
| 133 | + auto param_out = params_out[idx]; |
| 134 | + auto velocity = velocitys[idx]; |
| 135 | + auto velocity_out = velocitys_out[idx]; |
| 136 | + |
| 137 | + auto grad = grads[idx]; |
| 138 | + Tensor regularized_grad; |
| 139 | + if (regularization_flag == RegularizationType::kL2DECAY) { |
| 140 | + regularized_grad.mutable_data<T>(grad->dims(), ctx.GetPlace()); |
| 141 | + const auto& runner1 = NpuOpRunner("Muls", {*param}, {regularized_grad}, |
| 142 | + {{"value", regularization_coeff}}); |
| 143 | + runner1.Run(dev_ctx.stream()); |
| 144 | + const auto& runner2 = NpuOpRunner("Add", {regularized_grad, *grad}, |
| 145 | + {regularized_grad}, {}); |
| 146 | + runner2.Run(dev_ctx.stream()); |
| 147 | + } else { |
| 148 | + regularized_grad.ShareDataWith(*grad); |
| 149 | + } |
| 150 | + framework::TensorCopy(*param, ctx.GetPlace(), dev_ctx, param_out); |
| 151 | + framework::TensorCopy(*velocity, ctx.GetPlace(), dev_ctx, velocity_out); |
| 152 | + // NOTE: ApplyMomentum will change the input |
| 153 | + const auto& runner = NpuOpRunner( |
| 154 | + "ApplyMomentum", {*param_out, *velocity_out, *learning_rate, |
| 155 | + regularized_grad, mu_tensor}, |
| 156 | + {*param_out}, {{"use_nesterov", use_nesterov}}); |
| 157 | + runner.Run(dev_ctx.stream()); |
| 158 | + } |
| 159 | + } |
| 160 | +}; |
| 161 | +} // namespace operators |
| 162 | +} // namespace paddle |
| 163 | + |
| 164 | +namespace ops = paddle::operators; |
| 165 | +namespace plat = paddle::platform; |
| 166 | +REGISTER_OP_NPU_KERNEL(merged_momentum, ops::NPUMergedMomentumOpKernel<float>, |
| 167 | + ops::NPUMergedMomentumOpKernel<plat::float16>); |
0 commit comments