Skip to content

modusdatascience/choldate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

choldate

Somewhat fast updating and downdating of Cholesky factors in Python

##installation

Install from GitHub: pip install git+git://github.com/jcrudy/choldate.git

Or, clone the GitHub repository and install from source, e.g.,

  1. git clone git://github.com/jcrudy/choldate.git
  2. cd choldate; python setup.py install

I am new to packaging Python modules. If it doesn't work on your system, get in touch and I'll try to help you.

##usage

from choldate import cholupdate, choldowndate import numpy #Create a random positive definite matrix, V numpy.random.seed(1) X = numpy.random.normal(size=(100,10)) V = numpy.dot(X.transpose(),X) #Calculate the upper Cholesky factor, R R = numpy.linalg.cholesky(V).transpose() #Create a random update vector, u u = numpy.random.normal(size=R.shape[0]) #Calculate the updated positive definite matrix, V1, and its Cholesky factor, R1 V1 = V + numpy.outer(u,u) R1 = numpy.linalg.cholesky(V1).transpose() #The following is equivalent to the above R1_ = R.copy() cholupdate(R1_,u.copy()) assert(numpy.all((R1 - R1_)**2 < 1e-16)) #And downdating is the inverse of updating R_ = R1.copy() choldowndate(R_,u.copy()) assert(numpy.all((R - R_)**2 < 1e-16)) 

About

Somewhat fast updating and downdating of Cholesky factors in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages