|
| 1 | +from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, set_seed |
| 2 | +from datasets import load_dataset, Audio, Dataset, Features, ClassLabel |
| 3 | +import os |
| 4 | +import torch |
| 5 | +from speechbrain.pretrained import EncoderClassifier |
| 6 | +from dataclasses import dataclass |
| 7 | +from typing import Any, Dict, List, Union |
| 8 | +from transformers import SpeechT5HifiGan |
| 9 | +import soundfile as sf |
| 10 | +from datetime import datetime |
| 11 | +import intel_extension_for_pytorch as ipex |
| 12 | +import time |
| 13 | +import numpy as np |
| 14 | +from torch.utils.data import DataLoader |
| 15 | + |
| 16 | +class TextToSpeech: |
| 17 | + """Convert text to speech with a driven speaker embedding |
| 18 | +
|
| 19 | + 1) Default voice (Original model + Proved good default speaker embedding from trained dataset) |
| 20 | + 2) Finetuned voice (Fine-tuned offline model of specific person, such as Pat's voice + corresponding embedding) |
| 21 | + 3) Customized voice (Original model + User's customized input voice embedding) |
| 22 | + """ |
| 23 | + def __init__(self): |
| 24 | + """Make sure your export LD_PRELOAD=<path to libiomp5.so and libtcmalloc> beforehand.""" |
| 25 | + # default setting |
| 26 | + self.original_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") |
| 27 | + #self.original_model = ipex.optimize(self.original_model, torch.bfloat16) |
| 28 | + self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
| 29 | + self.device = "cpu" |
| 30 | + self.spk_model_name = "speechbrain/spkrec-xvect-voxceleb" |
| 31 | + self.speaker_model = EncoderClassifier.from_hparams( |
| 32 | + source=self.spk_model_name, |
| 33 | + run_opts={"device": self.device}, |
| 34 | + savedir=os.path.join("/tmp", self.spk_model_name) |
| 35 | + ) |
| 36 | + self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
| 37 | + self.vocoder.eval() |
| 38 | + self.default_speaker_embedding = torch.load('speaker_embeddings/spk_embed_default.pt') # load the default speaker embedding |
| 39 | + |
| 40 | + # specific parameters for Pat Gelsinger |
| 41 | + # preload the model in case of time-consuming runtime loading |
| 42 | + self.pat_model = None |
| 43 | + if os.path.exists("finetuned_model_1000_125_few_shot.pt"): |
| 44 | + self.pat_model = torch.load("finetuned_model_1000_125_few_shot.pt", map_location=torch.device('cpu')) |
| 45 | + |
| 46 | + # self.pat_model = ipex.optimize(self.pat_model, torch.bfloat16) |
| 47 | + # self.speaker_embeddings = self.create_speaker_embedding(driven_audio_path) |
| 48 | + self.pat_speaker_embeddings = None |
| 49 | + if os.path.exists('speaker_embeddings/spk_embed_pat.pt'): |
| 50 | + self.pat_speaker_embeddings = torch.load('speaker_embeddings/spk_embed_pat.pt') |
| 51 | + |
| 52 | + # ipex IOMP hardware resources |
| 53 | + self.cpu_pool = ipex.cpu.runtime.CPUPool([i for i in range(24)]) |
| 54 | + |
| 55 | + def create_speaker_embedding(self, driven_audio_path): |
| 56 | + """Create the speaker's embedding |
| 57 | +
|
| 58 | + driven_audio_path: the driven audio of that speaker e.g. vgjwo-5bunm.mp3 |
| 59 | + """ |
| 60 | + audio_dataset = Dataset.from_dict({"audio": [driven_audio_path]}).cast_column("audio", Audio(sampling_rate=16000)) |
| 61 | + waveform = audio_dataset[0]["audio"]['array'] |
| 62 | + with torch.no_grad(): |
| 63 | + speaker_embeddings = self.speaker_model.encode_batch(torch.tensor(waveform)) |
| 64 | + speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) # [1,1,512] |
| 65 | + # speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() |
| 66 | + speaker_embeddings = speaker_embeddings[0] # [1,512] |
| 67 | + return speaker_embeddings.cpu() |
| 68 | + |
| 69 | + def lookup_voice_embedding(self, voice): |
| 70 | + if os.path.exists(f"speaker_embeddings/spk_embed_{voice}.pt") == False: |
| 71 | + print("No customized speaker embedding is found! Use the default one") |
| 72 | + return "speaker_embeddings/spk_embed_default.pt" |
| 73 | + else: |
| 74 | + return f"speaker_embeddings/spk_embed_{voice}.pt" |
| 75 | + |
| 76 | + def text2speech(self, text, voice="default"): |
| 77 | + """Text to speech. |
| 78 | +
|
| 79 | + text: the input text |
| 80 | + voice: default/pat/huma/tom/eric... |
| 81 | + """ |
| 82 | + start = time.time() |
| 83 | + inputs = self.processor(text=text, return_tensors="pt") |
| 84 | + model = self.original_model |
| 85 | + speaker_embeddings = self.default_speaker_embedding |
| 86 | + |
| 87 | + if voice == "pat": |
| 88 | + if self.pat_model == None: |
| 89 | + print("Finetuned model is not found! Use the default one") |
| 90 | + else: |
| 91 | + model = self.pat_model |
| 92 | + if self.pat_speaker_embeddings == None: |
| 93 | + print("Pat's speaker embedding is not found! Use the default one") |
| 94 | + else: |
| 95 | + speaker_embeddings = self.pat_speaker_embeddings |
| 96 | + elif voice != "default": |
| 97 | + speaker_embeddings = torch.load(self.lookup_voice_embedding(voice)) |
| 98 | + |
| 99 | + with torch.no_grad(): |
| 100 | + with ipex.cpu.runtime.pin(self.cpu_pool): |
| 101 | + #with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True): |
| 102 | + spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) |
| 103 | + speech = self.vocoder(spectrogram) |
| 104 | + now = datetime.now() |
| 105 | + time_stamp = now.strftime("%d_%m_%Y_%H_%M_%S") |
| 106 | + output_video_path = f"output_{time_stamp}.wav" |
| 107 | + print(f"text to speech in {time.time() - start} seconds, and dump the video at {output_video_path}") |
| 108 | + sf.write(output_video_path, speech.cpu().numpy(), samplerate=16000) |
| 109 | + return output_video_path |
0 commit comments