|
| 1 | +import argparse |
| 2 | +import operator |
| 3 | +import sys |
| 4 | + |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.nn.functional as F |
| 8 | +import torch.optim as optim |
| 9 | +from data import get_batch |
| 10 | +from meta_optimizer import MetaOptimizer |
| 11 | +from model import MetaModel, Model |
| 12 | +from torch.autograd import Variable |
| 13 | + |
| 14 | +parser = argparse.ArgumentParser(description='PyTorch REINFORCE example') |
| 15 | +parser.add_argument('--batch_size', type=int, default=16, metavar='N', |
| 16 | + help='batch size (default: 16)') |
| 17 | +parser.add_argument('--optimizer_steps', type=int, default=10, metavar='N', |
| 18 | + help='number of meta optimizer steps (default: 10)') |
| 19 | +parser.add_argument('--updates_per_epoch', type=int, default=100, metavar='N', |
| 20 | + help='updates per epoch (default: 100)') |
| 21 | +parser.add_argument('--max_epoch', type=int, default=100, metavar='N', |
| 22 | + help='number of epoch (default: 100)') |
| 23 | +parser.add_argument('--hidden_size', type=int, default=10, metavar='N', |
| 24 | + help='hidden size of the meta optimizer (default: 10)') |
| 25 | +args = parser.parse_args() |
| 26 | + |
| 27 | +meta_optimizer = MetaOptimizer(args.hidden_size) |
| 28 | +optimizer = optim.Adam(meta_optimizer.parameters(), lr=1e-3) |
| 29 | + |
| 30 | +for epoch in range(args.max_epoch): |
| 31 | + decrease_in_loss = 0.0 |
| 32 | + for i in range(args.updates_per_epoch): |
| 33 | + |
| 34 | + # Sample a new model |
| 35 | + model = Model() |
| 36 | + |
| 37 | + # Create a helper class |
| 38 | + meta_model = MetaModel() |
| 39 | + meta_model.copy_params_from(model) |
| 40 | + |
| 41 | + # Reset lstm values of the meta optimizer |
| 42 | + meta_optimizer.reset_lstm() |
| 43 | + |
| 44 | + x, y = get_batch(args.batch_size |
| 45 | +) |
| 46 | + x, y = Variable(x), Variable(y) |
| 47 | + |
| 48 | + # Compute initial loss of the model |
| 49 | + f_x = model(x) |
| 50 | + initial_loss = (f_x - y).pow(2).mean() |
| 51 | + loss_sum = 0 |
| 52 | + for j in range(args.optimizer_steps): |
| 53 | + x, y = get_batch(args.batch_size) |
| 54 | + x, y = Variable(x), Variable(y) |
| 55 | + |
| 56 | + # First we need to compute the gradients of the model |
| 57 | + f_x = model(x) |
| 58 | + loss = (f_x - y).pow(2).mean() |
| 59 | + model.zero_grad() |
| 60 | + loss.backward() |
| 61 | + |
| 62 | + # Perfom a meta update |
| 63 | + meta_optimizer.meta_update(meta_model, model) |
| 64 | + |
| 65 | + # Compute a loss for a step the meta optimizer |
| 66 | + f_x = meta_model(x) |
| 67 | + loss = (f_x - y).pow(2).mean() |
| 68 | + loss_sum += loss |
| 69 | + |
| 70 | + # Compute relative decrease in the loss function w.r.t initial value |
| 71 | + decrease_in_loss += loss.data[0] / initial_loss.data[0] |
| 72 | + |
| 73 | + # Update the parameters of the meta optimizer |
| 74 | + meta_optimizer.zero_grad() |
| 75 | + loss_sum.backward() |
| 76 | + optimizer.step() |
| 77 | + |
| 78 | + print("Epoch: {}, average final/initial loss ratio: {}".format(epoch, decrease_in_loss / args.updates_per_epoch)) |
0 commit comments