|
13 | 13 |
|
14 | 14 | parser = argparse.ArgumentParser(description='PyTorch REINFORCE example') |
15 | 15 | parser.add_argument('--batch_size', type=int, default=16, metavar='N', |
16 | | - help='batch size (default: 16)') |
17 | | -parser.add_argument('--optimizer_steps', type=int, default=10, metavar='N', |
18 | | - help='number of meta optimizer steps (default: 10)') |
| 16 | + help='batch size (default: 16)') |
| 17 | +parser.add_argument('--optimizer_steps', type=int, default=20, metavar='N', |
| 18 | + help='number of meta optimizer steps (default: 20)') |
| 19 | +parser.add_argument('--truncated_bptt_step', type=int, default=10, metavar='N', |
| 20 | + help='step at which it truncates bptt (default: 10)') |
19 | 21 | parser.add_argument('--updates_per_epoch', type=int, default=100, metavar='N', |
20 | | - help='updates per epoch (default: 100)') |
| 22 | + help='updates per epoch (default: 100)') |
21 | 23 | parser.add_argument('--max_epoch', type=int, default=100, metavar='N', |
22 | | - help='number of epoch (default: 100)') |
| 24 | + help='number of epoch (default: 100)') |
23 | 25 | parser.add_argument('--hidden_size', type=int, default=10, metavar='N', |
24 | | - help='hidden size of the meta optimizer (default: 10)') |
| 26 | + help='hidden size of the meta optimizer (default: 10)') |
25 | 27 | args = parser.parse_args() |
26 | 28 |
|
| 29 | +assert args.optimizer_steps % args.truncated_bptt_step == 0 |
| 30 | + |
27 | 31 | meta_optimizer = MetaOptimizer(args.hidden_size) |
28 | 32 | optimizer = optim.Adam(meta_optimizer.parameters(), lr=1e-3) |
29 | 33 |
|
|
34 | 38 | # Sample a new model |
35 | 39 | model = Model() |
36 | 40 |
|
37 | | - # Create a helper class |
38 | | - meta_model = MetaModel() |
39 | | - meta_model.copy_params_from(model) |
40 | | - |
41 | | - # Reset lstm values of the meta optimizer |
42 | | - meta_optimizer.reset_lstm() |
43 | | - |
44 | 41 | x, y = get_batch(args.batch_size) |
45 | 42 | x, y = Variable(x), Variable(y) |
46 | 43 |
|
47 | 44 | # Compute initial loss of the model |
48 | 45 | f_x = model(x) |
49 | 46 | initial_loss = (f_x - y).pow(2).mean() |
50 | | - loss_sum = 0 |
51 | | - for j in range(args.optimizer_steps): |
52 | | - x, y = get_batch(args.batch_size) |
53 | | - x, y = Variable(x), Variable(y) |
54 | 47 |
|
55 | | - # First we need to compute the gradients of the model |
56 | | - f_x = model(x) |
57 | | - loss = (f_x - y).pow(2).mean() |
58 | | - model.zero_grad() |
59 | | - loss.backward() |
| 48 | + for k in range(args.optimizer_steps // args.truncated_bptt_step): |
| 49 | + # Keep states for truncated BPTT |
| 50 | + meta_optimizer.reset_lstm(keep_states=k > 0) |
| 51 | + |
| 52 | + # Create a helper class |
| 53 | + meta_model = MetaModel() |
| 54 | + meta_model.copy_params_from(model) |
60 | 55 |
|
61 | | - # Perfom a meta update |
62 | | - meta_optimizer.meta_update(meta_model, model) |
| 56 | + loss_sum = 0 |
| 57 | + for j in range(args.truncated_bptt_step): |
| 58 | + x, y = get_batch(args.batch_size) |
| 59 | + x, y = Variable(x), Variable(y) |
63 | 60 |
|
64 | | - # Compute a loss for a step the meta optimizer |
65 | | - f_x = meta_model(x) |
66 | | - loss = (f_x - y).pow(2).mean() |
67 | | - loss_sum += loss |
| 61 | + # First we need to compute the gradients of the model |
| 62 | + f_x = model(x) |
| 63 | + loss = (f_x - y).pow(2).mean() |
| 64 | + model.zero_grad() |
| 65 | + loss.backward() |
| 66 | + |
| 67 | + # Perfom a meta update |
| 68 | + meta_optimizer.meta_update(meta_model, model) |
| 69 | + |
| 70 | + # Compute a loss for a step the meta optimizer |
| 71 | + f_x = meta_model(x) |
| 72 | + loss = (f_x - y).pow(2).mean() |
| 73 | + loss_sum += loss |
| 74 | + |
| 75 | + # Update the parameters of the meta optimizer |
| 76 | + meta_optimizer.zero_grad() |
| 77 | + loss_sum.backward() |
| 78 | + optimizer.step() |
68 | 79 |
|
69 | 80 | # Compute relative decrease in the loss function w.r.t initial value |
70 | 81 | decrease_in_loss += loss.data[0] / initial_loss.data[0] |
71 | 82 |
|
72 | | - # Update the parameters of the meta optimizer |
73 | | - meta_optimizer.zero_grad() |
74 | | - loss_sum.backward() |
75 | | - optimizer.step() |
76 | | - |
77 | | - print("Epoch: {}, average final/initial loss ratio: {}".format(epoch, decrease_in_loss / args.updates_per_epoch)) |
| 83 | + print("Epoch: {}, average final/initial loss ratio: {}".format(epoch, |
| 84 | + decrease_in_loss / args.updates_per_epoch)) |
0 commit comments