|
30 | 30 | "0": {"name": "RTX 2080 Ti", "lock": Lock()}, |
31 | 31 | } |
32 | 32 |
|
| 33 | +# MODEL = "CompVis/stable-diffusion-v1-4" |
| 34 | +MODEL = "runwayml/stable-diffusion-v1-5" |
| 35 | + |
33 | 36 | # Supress some unnecessary warnings when loading the CLIPTextModel |
34 | 37 | logging.set_verbosity_error() |
35 | 38 |
|
36 | 39 | if not torch.cuda.is_available(): |
37 | 40 | raise RuntimeError('No CUDA device available, exiting.') |
38 | 41 |
|
39 | 42 | # Load the autoencoder model which will be used to decode the latents into image space. |
40 | | -vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae", use_auth_token=True) |
| 43 | +vae = AutoencoderKL.from_pretrained(MODEL, subfolder="vae", use_auth_token=True) |
41 | 44 |
|
42 | 45 | # Load the tokenizer and text encoder to tokenize and encode the text. |
43 | 46 | tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
44 | 47 | text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
45 | 48 |
|
46 | 49 | # The UNet model for generating the latents. |
47 | | -unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet", use_auth_token=True) |
| 50 | +unet = UNet2DConditionModel.from_pretrained(MODEL, subfolder="unet", use_auth_token=True) |
48 | 51 |
|
49 | 52 | # The noise scheduler |
50 | 53 | scheduler = LMSDiscreteScheduler( |
@@ -132,9 +135,9 @@ def generate_image(prompt, seed, steps, width=512, height=512, guidance=7.5): |
132 | 135 |
|
133 | 136 | # Set the EXIF data. See PIL.ExifTags.TAGS to map numbers to names. |
134 | 137 | exif = out.getexif() |
135 | | - exif[271] = prompt # Make |
136 | | - exif[272] = 'Stable Diffusion v1.4' # Model |
137 | | - exif[305] = f'seed={seed}, steps={steps}' # Software |
| 138 | + exif[271] = prompt # exif: Make |
| 139 | + exif[272] = MODEL # exif: Model |
| 140 | + exif[305] = f'seed={seed}, steps={steps}' # exif: Software |
138 | 141 |
|
139 | 142 | buf = BytesIO() |
140 | 143 | out.save(buf, format="JPEG", quality=85, exif=exif) |
|
0 commit comments