Skip to content

Commit 4022216

Browse files
authored
Merge pull request ephremdeme#4 from Manoj13-coder/master
Bellman Ford
2 parents c035a66 + 063a413 commit 4022216

File tree

1 file changed

+136
-0
lines changed

1 file changed

+136
-0
lines changed

Algorithms/Bellman Ford.cpp

Lines changed: 136 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,136 @@
1+
// A C++ program for Bellman-Ford's single source
2+
// shortest path algorithm.
3+
#include <bits/stdc++.h>
4+
5+
// a structure to represent a weighted edge in graph
6+
struct Edge {
7+
int src, dest, weight;
8+
};
9+
10+
// a structure to represent a connected, directed and
11+
// weighted graph
12+
struct Graph {
13+
// V-> Number of vertices, E-> Number of edges
14+
int V, E;
15+
16+
// graph is represented as an array of edges.
17+
struct Edge* edge;
18+
};
19+
20+
// Creates a graph with V vertices and E edges
21+
struct Graph* createGraph(int V, int E)
22+
{
23+
struct Graph* graph = new Graph;
24+
graph->V = V;
25+
graph->E = E;
26+
graph->edge = new Edge[E];
27+
return graph;
28+
}
29+
30+
// A utility function used to print the solution
31+
void printArr(int dist[], int n)
32+
{
33+
printf("Vertex Distance from Source\n");
34+
for (int i = 0; i < n; ++i)
35+
printf("%d \t\t %d\n", i, dist[i]);
36+
}
37+
38+
// The main function that finds shortest distances from src to
39+
// all other vertices using Bellman-Ford algorithm. The function
40+
// also detects negative weight cycle
41+
void BellmanFord(struct Graph* graph, int src)
42+
{
43+
int V = graph->V;
44+
int E = graph->E;
45+
int dist[V];
46+
47+
// Step 1: Initialize distances from src to all other vertices
48+
// as INFINITE
49+
for (int i = 0; i < V; i++)
50+
dist[i] = INT_MAX;
51+
dist[src] = 0;
52+
53+
// Step 2: Relax all edges |V| - 1 times. A simple shortest
54+
// path from src to any other vertex can have at-most |V| - 1
55+
// edges
56+
for (int i = 1; i <= V - 1; i++) {
57+
for (int j = 0; j < E; j++) {
58+
int u = graph->edge[j].src;
59+
int v = graph->edge[j].dest;
60+
int weight = graph->edge[j].weight;
61+
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
62+
dist[v] = dist[u] + weight;
63+
}
64+
}
65+
66+
// Step 3: check for negative-weight cycles. The above step
67+
// guarantees shortest distances if graph doesn't contain
68+
// negative weight cycle. If we get a shorter path, then there
69+
// is a cycle.
70+
for (int i = 0; i < E; i++) {
71+
int u = graph->edge[i].src;
72+
int v = graph->edge[i].dest;
73+
int weight = graph->edge[i].weight;
74+
if (dist[u] != INT_MAX && dist[u] + weight < dist[v]) {
75+
printf("Graph contains negative weight cycle");
76+
return; // If negative cycle is detected, simply return
77+
}
78+
}
79+
80+
printArr(dist, V);
81+
82+
return;
83+
}
84+
85+
// Driver program to test above functions
86+
int main()
87+
{
88+
/* Let us create the graph given in above example */
89+
int V = 5; // Number of vertices in graph
90+
int E = 8; // Number of edges in graph
91+
struct Graph* graph = createGraph(V, E);
92+
93+
// add edge 0-1 (or A-B in above figure)
94+
graph->edge[0].src = 0;
95+
graph->edge[0].dest = 1;
96+
graph->edge[0].weight = -1;
97+
98+
// add edge 0-2 (or A-C in above figure)
99+
graph->edge[1].src = 0;
100+
graph->edge[1].dest = 2;
101+
graph->edge[1].weight = 4;
102+
103+
// add edge 1-2 (or B-C in above figure)
104+
graph->edge[2].src = 1;
105+
graph->edge[2].dest = 2;
106+
graph->edge[2].weight = 3;
107+
108+
// add edge 1-3 (or B-D in above figure)
109+
graph->edge[3].src = 1;
110+
graph->edge[3].dest = 3;
111+
graph->edge[3].weight = 2;
112+
113+
// add edge 1-4 (or A-E in above figure)
114+
graph->edge[4].src = 1;
115+
graph->edge[4].dest = 4;
116+
graph->edge[4].weight = 2;
117+
118+
// add edge 3-2 (or D-C in above figure)
119+
graph->edge[5].src = 3;
120+
graph->edge[5].dest = 2;
121+
graph->edge[5].weight = 5;
122+
123+
// add edge 3-1 (or D-B in above figure)
124+
graph->edge[6].src = 3;
125+
graph->edge[6].dest = 1;
126+
graph->edge[6].weight = 1;
127+
128+
// add edge 4-3 (or E-D in above figure)
129+
graph->edge[7].src = 4;
130+
graph->edge[7].dest = 3;
131+
graph->edge[7].weight = -3;
132+
133+
BellmanFord(graph, 0);
134+
135+
return 0;
136+
}

0 commit comments

Comments
 (0)