|
| 1 | +# Vertex Model Garden SDK for Python |
| 2 | + |
| 3 | +The Vertex Model Garden SDK helps developers use [Model Garden](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/explore-models) open models to build AI-powered features and applications. |
| 4 | +The SDKs support use cases like the following: |
| 5 | + |
| 6 | +- Deploy an open model |
| 7 | +- Export open model weights |
| 8 | + |
| 9 | +## Installation |
| 10 | + |
| 11 | +To install the |
| 12 | +[google-cloud-aiplatform](https://pypi.org/project/google-cloud-aiplatform/) |
| 13 | +Python package, run the following command: |
| 14 | + |
| 15 | +```shell |
| 16 | +pip3 install --upgrade --user "google-cloud-aiplatform>=1.84" |
| 17 | +``` |
| 18 | + |
| 19 | +## Usage |
| 20 | + |
| 21 | +For detailed instructions, see [deploy an open model](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/use-models#deploy_an_open_model) and [deploy notebook tutorial](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_deployment_tutorial.ipynb). |
| 22 | + |
| 23 | +## Quick Start: Default Deployment |
| 24 | + |
| 25 | +This is the simplest way to deploy a model. If you provide just a model name, the SDK will use the default deployment configuration. |
| 26 | + |
| 27 | +```python |
| 28 | +from vertexai.preview import model_garden |
| 29 | + |
| 30 | +model = model_garden.OpenModel("google/paligemma@paligemma-224-float32") |
| 31 | +endpoint = model.deploy() |
| 32 | +``` |
| 33 | + |
| 34 | +**Use case:** Fast prototyping, first-time users evaluating model outputs. |
| 35 | + |
| 36 | +## List Deployable Models |
| 37 | + |
| 38 | +You can list all models that are currently deployable via Model Garden: |
| 39 | + |
| 40 | +```python |
| 41 | +from vertexai.preview import model_garden |
| 42 | + |
| 43 | +models = model_garden.list_deployable_models() |
| 44 | +``` |
| 45 | + |
| 46 | +To filter only Hugging Face models or by keyword: |
| 47 | + |
| 48 | +```python |
| 49 | +models = model_garden.list_deployable_models(list_hf_models=True, model_filter="stable-diffusion") |
| 50 | +``` |
| 51 | + |
| 52 | +**Use case:** Discover available models before deciding which one to deploy. |
| 53 | + |
| 54 | +## Hugging Face Model Deployment |
| 55 | + |
| 56 | +Deploy a model directly from Hugging Face using the model ID. |
| 57 | + |
| 58 | +```python |
| 59 | +model = model_garden.OpenModel("Qwen/Qwen2-1.5B-Instruct") |
| 60 | +endpoint = model.deploy() |
| 61 | +``` |
| 62 | + |
| 63 | +**Use case:** Leverage community or third-party models without custom container setup. If the model is gated, you may need to provide a Hugging Face access token: |
| 64 | + |
| 65 | +```python |
| 66 | +endpoint = model.deploy(hugging_face_access_token="your_hf_token") |
| 67 | +``` |
| 68 | + |
| 69 | +**Use case:** Deploy gated Hugging Face models requiring authentication. |
| 70 | + |
| 71 | +## List Deployment Configurations |
| 72 | + |
| 73 | +You can inspect available deployment configurations for a model: |
| 74 | + |
| 75 | +```python |
| 76 | +model = model_garden.OpenModel("google/paligemma@paligemma-224-float32") |
| 77 | +deploy_options = model.list_deploy_options() |
| 78 | +``` |
| 79 | + |
| 80 | +**Use case:** Evaluate compatible machine specs and containers before deployment. |
| 81 | + |
| 82 | +## Customize Deployment: Machine and Resource Configuration |
| 83 | + |
| 84 | +Specify exact hardware resources and endpoint/model names. |
| 85 | + |
| 86 | +```python |
| 87 | +endpoint = model.deploy( |
| 88 | + machine_type="g2-standard-4", |
| 89 | + accelerator_type="NVIDIA_L4", |
| 90 | + accelerator_count=1, |
| 91 | + min_replica_count=1, |
| 92 | + max_replica_count=1, |
| 93 | + endpoint_display_name="paligemma-endpoint", |
| 94 | + model_display_name="paligemma-model" |
| 95 | +) |
| 96 | +``` |
| 97 | + |
| 98 | +**Use case:** Production configuration, performance tuning, scaling. |
| 99 | + |
| 100 | +## EULA Acceptance |
| 101 | + |
| 102 | +Some models require acceptance of a license agreement. Pass `eula=True` if prompted. |
| 103 | + |
| 104 | +```python |
| 105 | +model = model_garden.OpenModel("google/gemma2@gemma-2-27b-it") |
| 106 | +endpoint = model.deploy(eula=True) |
| 107 | +``` |
| 108 | + |
| 109 | +**Use case:** First-time deployment of EULA-protected models. |
| 110 | + |
| 111 | +## Spot VM Deployment |
| 112 | + |
| 113 | +Schedule workloads on Spot VMs for lower cost. |
| 114 | + |
| 115 | +```python |
| 116 | +endpoint = model.deploy(spot=True) |
| 117 | +``` |
| 118 | + |
| 119 | +**Use case:** Cost-sensitive development and batch workloads. |
| 120 | + |
| 121 | +## Fast Tryout Deployment |
| 122 | + |
| 123 | +Enable experimental fast-deploy path for popular models. |
| 124 | + |
| 125 | +```python |
| 126 | +endpoint = model.deploy(fast_tryout_enabled=True) |
| 127 | +``` |
| 128 | + |
| 129 | +**Use case:** Interactive experimentation without full production setup. |
| 130 | + |
| 131 | +## Dedicated Endpoints |
| 132 | + |
| 133 | +Create a dedicated DNS-isolated endpoint. |
| 134 | + |
| 135 | +```python |
| 136 | +endpoint = model.deploy(use_dedicated_endpoint=True) |
| 137 | +``` |
| 138 | + |
| 139 | +**Use case:** Traffic isolation for enterprise or regulated workloads. |
| 140 | + |
| 141 | +## Reservation Affinity |
| 142 | + |
| 143 | +Use shared or specific Compute Engine reservations. |
| 144 | + |
| 145 | +```python |
| 146 | +endpoint = model.deploy( |
| 147 | + reservation_affinity_type="SPECIFIC_RESERVATION", |
| 148 | + reservation_affinity_key="compute.googleapis.com/reservation-name", |
| 149 | + reservation_affinity_values="projects/YOUR_PROJECT/zones/YOUR_ZONE/reservations/YOUR_RESERVATION" |
| 150 | +) |
| 151 | +``` |
| 152 | + |
| 153 | +**Use case:** Optimized resource usage with pre-reserved capacity. |
| 154 | + |
| 155 | +## Custom Container Image |
| 156 | + |
| 157 | +Override the default container with a custom image. |
| 158 | + |
| 159 | +```python |
| 160 | +endpoint = model.deploy( |
| 161 | + serving_container_image_uri="us-docker.pkg.dev/vertex-ai/custom-container:latest" |
| 162 | +) |
| 163 | +``` |
| 164 | + |
| 165 | +**Use case:** Use of custom inference servers or fine-tuned environments. |
| 166 | + |
| 167 | +## Advanced Full Container Configuration |
| 168 | + |
| 169 | +Further customize startup probes, health checks, shared memory, and gRPC ports. |
| 170 | + |
| 171 | +```python |
| 172 | +endpoint = model.deploy( |
| 173 | + serving_container_image_uri="us-docker.pkg.dev/vertex-ai/custom-container:latest", |
| 174 | + container_command=["python3"], |
| 175 | + container_args=["serve.py"], |
| 176 | + container_ports=[8888], |
| 177 | + container_env_vars={"ENV": "prod"}, |
| 178 | + container_predict_route="/predict", |
| 179 | + container_health_route="/health", |
| 180 | + serving_container_shared_memory_size_mb=512, |
| 181 | + serving_container_grpc_ports=[9000], |
| 182 | + serving_container_startup_probe_exec=["/bin/check-start.sh"], |
| 183 | + serving_container_health_probe_exec=["/bin/health-check.sh"] |
| 184 | +) |
| 185 | +``` |
| 186 | + |
| 187 | +**Use case:** Production-grade deployments requiring deep customization of runtime behavior and monitoring. |
| 188 | + |
| 189 | +## Documentation |
| 190 | + |
| 191 | +You can find complete documentation for the Vertex AI SDKs and Model Garden in the Google Cloud [documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) |
| 192 | + |
| 193 | +## Contributing |
| 194 | + |
| 195 | +See [Contributing](https://github.com/googleapis/python-aiplatform/blob/main/CONTRIBUTING.rst) for more information on contributing to the Vertex AI Python SDK. |
| 196 | + |
| 197 | +## License |
| 198 | + |
| 199 | +The contents of this repository are licensed under the [Apache License, version 2.0](http://www.apache.org/licenses/LICENSE-2.0). |
0 commit comments