|
| 1 | +/* |
| 2 | +Find the Kth Permutation of a given number |
| 3 | +*/ |
| 4 | + |
| 5 | +package main |
| 6 | + |
| 7 | +import ("fmt") |
| 8 | + |
| 9 | +func Factorial(n int) int { |
| 10 | + var FactorialArray = []int{1,1} |
| 11 | + if n == 0 || n == 1 {return 1} |
| 12 | + for i:=2;i<n+1;i++ { |
| 13 | + FactorialArray = append(FactorialArray,i*FactorialArray[i-1]) |
| 14 | + } |
| 15 | + return FactorialArray[n] |
| 16 | +} |
| 17 | + |
| 18 | +func Remove(array []int,index int) []int { |
| 19 | + if index >= len(array) { |
| 20 | + return array |
| 21 | + } else { |
| 22 | + return append(array[:index],array[index+1:]...) |
| 23 | + } |
| 24 | +} |
| 25 | + |
| 26 | +func FindKthPermutation(num []int,k int,) *[]int { |
| 27 | + var KthPermutation []int |
| 28 | + t := len(num) |
| 29 | + num1 := num |
| 30 | + if k > Factorial(len(num)) { |
| 31 | + KthPermutation = append(KthPermutation,-1) |
| 32 | + return &KthPermutation |
| 33 | + } |
| 34 | + for i:=0;i<len(num);i++ { |
| 35 | + blockSize := Factorial(t-1) |
| 36 | + selected := (k-1)/blockSize |
| 37 | + //fmt.Println(num1) |
| 38 | + //fmt.Println(selected) |
| 39 | + KthPermutation = append(KthPermutation,num1[selected]) |
| 40 | + num1 = Remove(num1,selected) // The array is shrinking with every iteration |
| 41 | + k = k -selected*blockSize |
| 42 | + t-- |
| 43 | + } |
| 44 | + return &KthPermutation |
| 45 | +} |
| 46 | + |
| 47 | + |
| 48 | +func main() { |
| 49 | + array := []int{1,2,3,4} |
| 50 | + KthPermutationPtr := FindKthPermutation(array,8) |
| 51 | + fmt.Println(*KthPermutationPtr) |
| 52 | +} |
| 53 | + |
0 commit comments