|
1 | | -\textit{Suppose that X and Y are topological vector spaces, |
2 | | -% |
3 | | - $\dim Y < \infty$, |
| 1 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 2 | +% FunctionalAnalysis |
| 3 | +% 1_10.tex |
| 4 | +% |
| 5 | +% encoding: UTF-8 |
| 6 | +% EOL: LF |
4 | 7 | % |
5 | | -$\Lambda : X \to Y$ is linear, and $\Lambda(X) = Y$. |
| 8 | +% format: LaTeX |
| 9 | +% indent: spaces (2) |
| 10 | +% width: 127 |
| 11 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 12 | +\textit{Suppose that X and Y are topological vector spaces, $\dim Y < \infty$, $\Lambda : X \to Y$ is linear, and % |
| 13 | +$\Lambda(X) = Y$. |
6 | 14 | % |
7 | 15 | \begin{enumerate} |
8 | 16 | \item{ |
|
16 | 24 | } |
17 | 25 | % |
18 | 26 | \begin{proof} |
19 | | -Discard the trivial case $\Lambda = 0$ and assume that $\dim Y = n$ % |
20 | | -for some positive $n$. % |
21 | | -Let $e$ range over a basis of $B$ of $Y$ then pick in $X$ an arbitrary % |
22 | | -neighborhood $W$ of the origin: There so exists $V$ a balanced neighborhood of % |
23 | | -the origin of $X$ such that |
| 27 | +Discard the trivial case $\Lambda = 0$ and assume that $\dim Y > 0$. From now on, $Y$ has a basis $B= \singleton{e, e', \dots}$ % |
| 28 | +and $W$ is an arbitrary neighborhood of $0$. Since addition is continuous, there exists a balanced open $V\subset Y$ such that % |
24 | 29 | % |
25 | 30 | \begin{align} |
26 | 31 | \label{definition of v} |
27 | | - \sum_{e} V \subset W, |
| 32 | + \sum_{e} V \subset W. |
28 | 33 | \end{align} |
29 | 34 | % |
30 | | -since addition is continuous. Moreover, for each $e$, there exists $x_e$ % |
31 | | -in $X$ such that |
32 | | -% |
33 | | - $\Lambda(x_e)=e$, |
34 | | -% |
35 | | -simply because $\Lambda$ is onto: Given $y$ in $Y$, % |
36 | | -of $e$-component(s) $y_e$, we now obtain |
| 35 | +Moreover, the surjectivity of $\Lambda$ allows us to pick $x_e$ with $\Lambda x_e = e$. This implies that % |
| 36 | +every $y = \sum_e y_e e $ ($y_e \in \C$) can be expressed as % |
37 | 37 | % |
38 | 38 | \begin{align}\label{1_10_sum} |
39 | | - y = \sum_{e} y_e \Lambda (x_e). |
| 39 | + y = \sum_{e} y_e \Lambda x_e. |
40 | 40 | \end{align} |
41 | 41 | % |
42 | | -As a finite set, $\set{x_e}{e\in B}$ is bounded: There so exists a positive % |
43 | | -scalar $s$ such that |
| 42 | +Note that $\set{x_e}{e\in B}$ is bounded (as a finite set). Hence % |
44 | 43 | % |
45 | 44 | \begin{align} |
46 | | - \forall e\in B, x_e \in s V. |
| 45 | + \set{x_e}{e \in B} \subset sV |
47 | 46 | \end{align} |
48 | 47 | % |
49 | | -Combining this with (\ref{1_10_sum}) shows that |
| 48 | +for some $s > 0$. Combining this with (\ref{1_10_sum}) yields % |
50 | 49 | % |
51 | 50 | \begin{align} |
52 | 51 | \label{y in sum of lambda V} |
53 | | - y \in \sum_e y_e \,s \Lambda (V). |
| 52 | + y \in \sum_e s y_e \Lambda (V). |
54 | 53 | \end{align} |
55 | 54 | % |
56 | | -We now come back to (\ref{definition of v}) and so conclude that % |
| 55 | +Using (\ref{definition of v}) and the balancedness of $\Lambda(V)$, we conclude that |
57 | 56 | % |
58 | 57 | \begin{align} |
59 | | - y \in \sum_e \Lambda (V) \subset \Lambda(W) |
| 58 | + y \in \sum_e \Lambda (V) \subset \Lambda(W) \quad (\norma{\infty}{y} < 1/s). |
60 | 59 | \end{align} |
61 | 60 | % |
62 | | -for if $|y_e| < 1/s$; which proves (a) whether % |
63 | | -$B$ is the standard basis of $Y = \C^n$ equipped with $\norma{\infty}{\,\cdot\,}$. % |
64 | | -% |
65 | | -The general case is now provided for free by [\ref{notations: vector spaces: finite-dimensional vector spaces}].\\\\ |
66 | | -% |
67 | | -% |
68 | | -To prove (b), assume that the null space |
69 | | -% |
70 | | - $\{\Lambda = 0\}$ % |
71 | | -% |
72 | | -is closed and let $f, \pi$ be as in Exercise 1.9, % |
73 | | -% |
74 | | - $\{\Lambda = 0\}$ % |
| 61 | +This proves (a) in the case where $Y = \C^n$ and $B$ is the standard basis. The general case now follows from % |
| 62 | +[\ref{notations: vector spaces: finite-dimensional vector spaces}].\\\\ |
75 | 63 | % |
76 | | -playing the role of $N$. Since $\Lambda$ is onto, the first isomorphism % |
77 | | -theorem (see Exercise 1.9) asserts that $f$ is an isomorphism of $X/N$ % |
78 | | -onto $Y$. % |
79 | | -We now conclude with the help of [\ref{notations: vector spaces: finite-dimensional vector spaces}] % |
80 | | -that $f$ is a homeomorphism of $X/N$ onto $Y$. % |
| 64 | +To prove (b), assume that the null space $\{\Lambda = 0\}$ is closed and let $f, \pi$ be as in Exercise 1.9, % |
| 65 | +$\{\Lambda = 0\}$ playing the role of $N$. Since $\Lambda$ is onto, the first isomorphism theorem (see Exercise 1.9) asserts % |
| 66 | +that $f$ is an isomorphism of $X/N$ onto $Y$. We now conclude with the help of % |
| 67 | +[\ref{notations: vector spaces: finite-dimensional vector spaces}] that $f$ is a homeomorphism of $X/N$ onto $Y$. % |
81 | 68 | We have thus established that $f$ is continuous: So is $\Lambda = f\circ \pi$. |
82 | 69 | \end{proof} |
83 | 70 | % END |
0 commit comments