Skip to content

Commit dd08f18

Browse files
committed
UPDATE: Rewriting of 1.10.
1 parent ac8465e commit dd08f18

File tree

3 files changed

+38
-51
lines changed

3 files changed

+38
-51
lines changed

FA_DM.pdf

0 Bytes
Binary file not shown.

chapter_1/1_10.tex

Lines changed: 30 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,16 @@
1-
\textit{Suppose that X and Y are topological vector spaces,
2-
%
3-
$\dim Y < \infty$,
1+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
2+
% FunctionalAnalysis
3+
% 1_10.tex
4+
%
5+
% encoding: UTF-8
6+
% EOL: LF
47
%
5-
$\Lambda : X \to Y$ is linear, and $\Lambda(X) = Y$.
8+
% format: LaTeX
9+
% indent: spaces (2)
10+
% width: 127
11+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
12+
\textit{Suppose that X and Y are topological vector spaces, $\dim Y < \infty$, $\Lambda : X \to Y$ is linear, and %
13+
$\Lambda(X) = Y$.
614
%
715
\begin{enumerate}
816
\item{
@@ -16,68 +24,47 @@
1624
}
1725
%
1826
\begin{proof}
19-
Discard the trivial case $\Lambda = 0$ and assume that $\dim Y = n$ %
20-
for some positive $n$. %
21-
Let $e$ range over a basis of $B$ of $Y$ then pick in $X$ an arbitrary %
22-
neighborhood $W$ of the origin: There so exists $V$ a balanced neighborhood of %
23-
the origin of $X$ such that
27+
Discard the trivial case $\Lambda = 0$ and assume that $\dim Y > 0$. From now on, $Y$ has a basis $B= \singleton{e, e', \dots}$ %
28+
and $W$ is an arbitrary neighborhood of $0$. Since addition is continuous, there exists a balanced open $V\subset Y$ such that %
2429
%
2530
\begin{align}
2631
\label{definition of v}
27-
\sum_{e} V \subset W,
32+
\sum_{e} V \subset W.
2833
\end{align}
2934
%
30-
since addition is continuous. Moreover, for each $e$, there exists $x_e$ %
31-
in $X$ such that
32-
%
33-
$\Lambda(x_e)=e$,
34-
%
35-
simply because $\Lambda$ is onto: Given $y$ in $Y$, %
36-
of $e$-component(s) $y_e$, we now obtain
35+
Moreover, the surjectivity of $\Lambda$ allows us to pick $x_e$ with $\Lambda x_e = e$. This implies that %
36+
every $y = \sum_e y_e e $ ($y_e \in \C$) can be expressed as %
3737
%
3838
\begin{align}\label{1_10_sum}
39-
y = \sum_{e} y_e \Lambda (x_e).
39+
y = \sum_{e} y_e \Lambda x_e.
4040
\end{align}
4141
%
42-
As a finite set, $\set{x_e}{e\in B}$ is bounded: There so exists a positive %
43-
scalar $s$ such that
42+
Note that $\set{x_e}{e\in B}$ is bounded (as a finite set). Hence %
4443
%
4544
\begin{align}
46-
\forall e\in B, x_e \in s V.
45+
\set{x_e}{e \in B} \subset sV
4746
\end{align}
4847
%
49-
Combining this with (\ref{1_10_sum}) shows that
48+
for some $s > 0$. Combining this with (\ref{1_10_sum}) yields %
5049
%
5150
\begin{align}
5251
\label{y in sum of lambda V}
53-
y \in \sum_e y_e \,s \Lambda (V).
52+
y \in \sum_e s y_e \Lambda (V).
5453
\end{align}
5554
%
56-
We now come back to (\ref{definition of v}) and so conclude that %
55+
Using (\ref{definition of v}) and the balancedness of $\Lambda(V)$, we conclude that
5756
%
5857
\begin{align}
59-
y \in \sum_e \Lambda (V) \subset \Lambda(W)
58+
y \in \sum_e \Lambda (V) \subset \Lambda(W) \quad (\norma{\infty}{y} < 1/s).
6059
\end{align}
6160
%
62-
for if $|y_e| < 1/s$; which proves (a) whether %
63-
$B$ is the standard basis of $Y = \C^n$ equipped with $\norma{\infty}{\,\cdot\,}$. %
64-
%
65-
The general case is now provided for free by [\ref{notations: vector spaces: finite-dimensional vector spaces}].\\\\
66-
%
67-
%
68-
To prove (b), assume that the null space
69-
%
70-
$\{\Lambda = 0\}$ %
71-
%
72-
is closed and let $f, \pi$ be as in Exercise 1.9, %
73-
%
74-
$\{\Lambda = 0\}$ %
61+
This proves (a) in the case where $Y = \C^n$ and $B$ is the standard basis. The general case now follows from %
62+
[\ref{notations: vector spaces: finite-dimensional vector spaces}].\\\\
7563
%
76-
playing the role of $N$. Since $\Lambda$ is onto, the first isomorphism %
77-
theorem (see Exercise 1.9) asserts that $f$ is an isomorphism of $X/N$ %
78-
onto $Y$. %
79-
We now conclude with the help of [\ref{notations: vector spaces: finite-dimensional vector spaces}] %
80-
that $f$ is a homeomorphism of $X/N$ onto $Y$. %
64+
To prove (b), assume that the null space $\{\Lambda = 0\}$ is closed and let $f, \pi$ be as in Exercise 1.9, %
65+
$\{\Lambda = 0\}$ playing the role of $N$. Since $\Lambda$ is onto, the first isomorphism theorem (see Exercise 1.9) asserts %
66+
that $f$ is an isomorphism of $X/N$ onto $Y$. We now conclude with the help of %
67+
[\ref{notations: vector spaces: finite-dimensional vector spaces}] that $f$ is a homeomorphism of $X/N$ onto $Y$. %
8168
We have thus established that $f$ is continuous: So is $\Lambda = f\circ \pi$.
8269
\end{proof}
8370
% END

notations.tex

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -192,11 +192,11 @@ \subsubsection{Topology of a finite-dimensional vector space}
192192
\item $W$ and $Y$ are homeomorphic to each other, they are normable.
193193
\end{enumerate}
194194
%
195-
Furthermore, the norms on $W$ and $Y$ are \textit{equivalent}. That is, for any given norm on $Y$ and any given norm on $W$,
196-
there exists a postive constant (termed as ``modulus of continuity'') $C=C_h$ such that %
197-
%
195+
Furthermore, the norms on $W$ and $Y$ are \textit{equivalent}. That is, for any given norm $\norm{\, \cdot \, }$ on $Y$ and %
196+
any given norm $\norma{W}{\,\cdot \,}$ on $W$, there exists a postive constant (termed as ``modulus of continuity'') $C= C_h$ %
197+
such that %
198198
\begin{align}
199-
\norma{}{w} & \leq C \norm{y} \quad\quad \left((y, w) \in h \right),
199+
\norma{W}{w} & \leq C \norm{y} \quad\quad \left((y, w) \in h \right),
200200
\end{align}
201201
%
202202
as $h$ is continuous. The special case $W=Y$ is that all norms on $Y$ are equivalent, in the sense that %
@@ -205,14 +205,14 @@ \subsubsection{Topology of a finite-dimensional vector space}
205205
\norma{{\text{copy of }Y}}{h(y)} \leq C \norm{y}.
206206
\end{align}
207207
%
208-
\subsubsection{The standard norms $\norma{1}{\,\cdot\,}$, $\norma{2}{\,\cdot\,}$, $\norma{\infty}{\,\cdot\,}$}
209-
When $\C^n$ is equipped with standard norms $1, 2, \infty$, the sharp constant\ie the smallest %
210-
$C_{i, j}$ ($i, j = 1, 2, \infty$) such that %
208+
\subsubsection{The standard norms $\norma{1}{\,\cdot\,}$, $\norma{2}{\,\cdot\,}$, $\norma{\infty}{\,\cdot\,}$} When $\C^n$ %
209+
is equipped with standard norms $1, 2, \infty$, the sharp constant\ie the smallest $C_{i, j}$ such that %
210+
%
211211
\begin{align}
212212
\norma{j}{z} \leq C_{i, j} \norma{i}{z} %\quad \left(z \in \C^n \right)
213213
\end{align}
214214
%
215-
is easily derived from definitions - see [1.19] of \cite{FA} - with the noticeable exception of $C_{2, 1}=\sqrt{n}$. %
215+
is easily derived from definitions - see [1.19] of \cite{FA} - with the noticeable exception of $C_{2, 1} = \sqrt{n}$. %
216216
Indeed, $\norma{1}{z} \leq \sqrt{n} \norma{2}{z}$ is a special Cauchy-Schwarz inequality, see (1) in [12.2] of \cite{FA}. %
217217
The steps of this classical trick are left to the reader. %
218218
%

0 commit comments

Comments
 (0)