@@ -102,7 +102,7 @@ \subsection{Justifying the terminology}
102102% First proof: Use the given hint
103103% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
104104\subsection {Proof (with the given hint) }
105- We now prove the second part by constructing a specific sequence $ \singleton {f_n}$ that simultaneously satisfies (a) and (b). %
105+ We now prove the second part by constructing a specific sequence $ \singleton {f_n}$ that satisfies both (a) and (b). %
106106Indeed, the hint suggests that there exists a bijective mapping %
107107%
108108\begin {align }
@@ -131,7 +131,7 @@ \subsection{Proof (with the given hint)}
131131 \tendsto {n}{\infty } \infty ,
132132\end {align }
133133%
134- given a sequence $ \singleton {\gamma _n}$ that tends to $ \infty $ . This proves (b), since %
134+ given a sequence $ \singleton {\gamma _n}$ diverging to $ \infty $ . This proves (b), since %
135135$ \singleton {\gamma _n f_n(x_\gamma )}$ diverges.
136136\end {proof }
137137%
@@ -150,7 +150,7 @@ \subsection{Proof with binary expansions (no hint)}
150150 (\beta _1, \dots , \beta _n, \dots ) & \mapsto \sum _{k=1}^\infty \beta _k 2^{\minus k}. \nonumber
151151\end {align }
152152%
153- A suitable $ \singleton {f_n}$ can be defined under the same notation, as follows: %
153+ A suitable $ \singleton {f_n}$ can be defined as follows: %
154154%
155155\begin {align }
156156 \label {definition of f_n (alpha )} f_n(x) \Def \begin {cases }
@@ -168,14 +168,19 @@ \subsection{Proof with binary expansions (no hint)}
168168 n_{k+1} - n_k > k.
169169\end {align }
170170%
171- The point is that $ 1 _{\{ n_1, n_2, \dots \} }$ is eventually aperiodic on $ {\N _{+}}$ . Moreover, the specialization %
172- $ \beta ^{\gamma } = 1 _{\{ n_1, n_2, \dots \} }$ implies %
171+ The crucial point is that the sequence $ 1 _{\{ n_1, n_2, \dots \} }$ is eventually aperiodic. Moreover, the particular choice %
172+ %
173+ \begin {align }
174+ \beta ^{\gamma } \Def 1_{\{ n_1, n_2, \dots \} }
175+ \end {align }
176+ %
177+ implies %
173178%
174179\begin {align } \label {p sum of bits }
175180 \beta ^\gamma _1 + \dots + \beta ^\gamma _{n_1} + \dots + \beta ^\gamma _{n_k} = k.
176181\end {align }
177182%
178- Finally, the combination of (\ref {definition of f_n (alpha )}) with (\ref {p sum of bits }) yields %
183+ Finally, (\ref {definition of f_n (alpha )}) and (\ref {p sum of bits }) together yield %
179184%
180185\begin {align }
181186 \gamma _{n_k} f_{n_{k}}(\bin (\beta ^\gamma ))
@@ -185,7 +190,7 @@ \subsection{Proof with binary expansions (no hint)}
185190 \tendsto {k}{\infty }\infty .
186191\end {align }
187192%
188- In conclusion, every sequence $ \singleton { \ gamma _n} $ that tends to $ \infty $ contains a subsequence %
193+ In conclusion, every sequence of scalars $ \ gamma _n$ such that $ \gamma _n \ to \infty $ contains a subsequence%
189194$ \singleton {\gamma _{n_k}}$ that causes $ \singleton {\gamma _{n_k}f_{n_k}}$ to diverge. This is (b).
190195\end {proof }
191196%
0 commit comments