Skip to content

Commit 92e52db

Browse files
committed
UPDATE: More idiomatic variants in 1_7, 2_15 and Notations.
1 parent 13e810f commit 92e52db

File tree

4 files changed

+21
-20
lines changed

4 files changed

+21
-20
lines changed

FA_DM.pdf

-535 Bytes
Binary file not shown.

chapter_1/1_7.tex

Lines changed: 12 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ \subsection{Justifying the terminology}
102102
% First proof: Use the given hint
103103
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
104104
\subsection{Proof (with the given hint)}
105-
We now prove the second part by constructing a specific sequence $\singleton{f_n}$ that simultaneously satisfies (a) and (b). %
105+
We now prove the second part by constructing a specific sequence $\singleton{f_n}$ that satisfies both (a) and (b). %
106106
Indeed, the hint suggests that there exists a bijective mapping %
107107
%
108108
\begin{align}
@@ -131,7 +131,7 @@ \subsection{Proof (with the given hint)}
131131
\tendsto{n}{\infty} \infty,
132132
\end{align}
133133
%
134-
given a sequence $\singleton{\gamma_n}$ that tends to $\infty$. This proves (b), since %
134+
given a sequence $\singleton{\gamma_n}$ diverging to $\infty$. This proves (b), since %
135135
$\singleton{\gamma_n f_n(x_\gamma)}$ diverges.
136136
\end{proof}
137137
%
@@ -150,7 +150,7 @@ \subsection{Proof with binary expansions (no hint)}
150150
(\beta_1, \dots, \beta_n, \dots) & \mapsto \sum_{k=1}^\infty \beta_k 2^{\minus k}. \nonumber
151151
\end{align}
152152
%
153-
A suitable $\singleton{f_n}$ can be defined under the same notation, as follows: %
153+
A suitable $\singleton{f_n}$ can be defined as follows: %
154154
%
155155
\begin{align}
156156
\label{definition of f_n(alpha)} f_n(x) \Def \begin{cases}
@@ -168,14 +168,19 @@ \subsection{Proof with binary expansions (no hint)}
168168
n_{k+1} - n_k > k.
169169
\end{align}
170170
%
171-
The point is that $1_{\{n_1, n_2, \dots \}}$ is eventually aperiodic on ${\N_{+}}$. Moreover, the specialization %
172-
$\beta^{\gamma} = 1_{\{n_1, n_2, \dots \}}$ implies %
171+
The crucial point is that the sequence $1_{\{n_1, n_2, \dots \}}$ is eventually aperiodic. Moreover, the particular choice %
172+
%
173+
\begin{align}
174+
\beta^{\gamma} \Def 1_{\{n_1, n_2, \dots \}}
175+
\end{align}
176+
%
177+
implies %
173178
%
174179
\begin{align} \label{p sum of bits}
175180
\beta^\gamma_1 + \dots + \beta^\gamma_{n_1} + \dots + \beta^\gamma_{n_k} = k.
176181
\end{align}
177182
%
178-
Finally, the combination of (\ref{definition of f_n(alpha)}) with (\ref{p sum of bits}) yields %
183+
Finally, (\ref{definition of f_n(alpha)}) and (\ref{p sum of bits}) together yield %
179184
%
180185
\begin{align}
181186
\gamma_{n_k} f_{n_{k}}(\bin(\beta^\gamma))
@@ -185,7 +190,7 @@ \subsection{Proof with binary expansions (no hint)}
185190
\tendsto{k}{\infty}\infty.
186191
\end{align}
187192
%
188-
In conclusion, every sequence $\singleton{\gamma_n}$ that tends to $\infty$ contains a subsequence %
193+
In conclusion, every sequence of scalars $\gamma_n$ such that $\gamma_n \to \infty$ contains a subsequence%
189194
$\singleton{\gamma_{n_k}}$ that causes $\singleton{\gamma_{n_k}f_{n_k}}$ to diverge. This is (b).
190195
\end{proof}
191196
%

chapter_2/2_15.tex

Lines changed: 6 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -16,23 +16,19 @@
1616
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
1717
% A. Assumptions.
1818
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
19-
Take $E_n$ and $V_n$ such that %
19+
Take a sequence of open sets $\singleton{V_n}$ where %
2020
%
2121
\renewcommand{\labelenumi}{(\roman{enumi})}
2222
\begin{enumerate}
23-
\item $X = V_n \cup \overline{E}_n$ \quad ($V_n \cap \overline{E}_n = \emptyset)$;
24-
\item $X = \overline{V}_n$;
23+
\item $X = V_n \cup \closure{E}_n$ \quad ($V_n \cap \overline{E}_n = \emptyset)$;
24+
\item $X = \closure{V_n}$;
2525
\item $ X\setminus Y = \bigcup_{n=1}^\infty E_n$
2626
\end{enumerate}
2727
\renewcommand{\labelenumi}{(\alph{enumi})}
2828
%
29-
for all positive integers $n$. First, let $x$ be an arbitrary element of $X$. We note that $x + V_n$ is open and dense
30-
as well (because%
31-
\footnote{
32-
This is also a special case of \citeresultFA{1.3 (b)}, since %
33-
$X = x + X \subset \overline{x + V_n}$.
34-
}
35-
the translation by $x$ is a homeomorphism of $X$ onto $X$).
29+
for all $n$. Fix $x \in X$. Then $x + V_n$ is also open and dense because the translation by $x$ is a %
30+
self-homeomorphism. Alternatively, observe that $X = x + X \subset \closure{x + V_n}$, %
31+
which is is a special case of \citeresultFA{1.3 (b)}. %
3632
%
3733
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
3834
% B. Where Baire's theorem is involved.

notations.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ \subsection{Equinumerosity}%
100100
\section{Topological vector spaces}
101101
\subsection{Scalar field}%
102102
$\C$ extends $\R$, which implies that a property\eg linearity, that is true on $\C$ is also true on $\R$. %
103-
The complex case is then a \textit{special case} of the real one. Sometimes, this restriction can be significant. %
103+
The complex case is then a \textit{special case} of the real case. Sometimes, this restriction can be significant. %
104104
Nevertheless, the standard scalar field is $\C$, which means that considering $\R$ instead of $\C$ makes no difference, %
105105
unless stated otherwise. %
106106
%
@@ -125,7 +125,7 @@ \subsection{Vector space bases}\label{notations: vector spaces: vector space bas
125125
\item all bases to have the same cardinal, which is called the {\it dimension} of $X$ and is denoted as $\dim(X)$. %
126126
\end{enumerate}
127127
%
128-
We now come to the finite-dimensional case. Note that the $0$-dimensional case is the degenerate case $B=\emptyset$, %
128+
We now turn to the finite-dimensional case. Note that the $0$-dimensional case is the degenerate case $B=\emptyset$, %
129129
which is equivalent to $X=\singleton{0}$. Our first step is to study $\C^n$ ($n>0$) the standard $n$-dimensional vector space.
130130
%
131131
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
@@ -189,7 +189,7 @@ \subsubsection{Topology of a finite-dimensional vector space}
189189
\norm{y} \leq C \norma{2}{z} \quad \bigl((z, y) \in f\bigr),
190190
\end{align}
191191
%
192-
because $f$ is continuous. Now pick an $n$-dimensional topological vector space $W$, then reiterate the same reasoning, %
192+
because $f$ is continuous. Now pick an $n$-dimensional topological vector space $W$, then repeat the same reasoning, %
193193
first with $g: \C^n \to W$, next with $h = g\circ f^{\,\minus 1}$ playing the role of $f$. This establishes that the
194194
homeomorphism $h$ maps $Y$ onto $W$ and that $W$ is normable as well. It is now clear that the following assertions are
195195
equivalent in the finite-dimensional context, %

0 commit comments

Comments
 (0)