Skip to content

Commit 9225939

Browse files
committed
UPDATE: Started to rewrite Exercise 2.3. Rewrote the lemma, as a beginning.
1 parent 7ea8f2b commit 9225939

File tree

9 files changed

+99
-134
lines changed

9 files changed

+99
-134
lines changed

FA_DM.pdf

-300 Bytes
Binary file not shown.

FA_DM.tex

Lines changed: 16 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
\usepackage{amsmath}
99
\usepackage{
1010
physics,
11-
amssymb,
11+
amssymb, amsfonts,
1212
mathrsfs,
1313
amsthm,
1414
mathspec,
@@ -70,7 +70,7 @@
7070
\setmathfont(Latin)[Uppercase=Regular,Lowercase=Regular]{\mainfont}
7171
\setmathfont(Greek)[Uppercase=Regular,Lowercase=Regular]{\mainfont}
7272
\setmathrm{\mainfont}
73-
\setmathbb{\mainfont}
73+
%\setmathbb{\mainfont}
7474
%\setmathit{\mainfont}
7575
\setmathtt{CMU Typewriter Text Light}
7676
%\setmathbf{CMU Serif}
@@ -154,12 +154,15 @@
154154

155155
% Arithmetics
156156
\newcommand{\ceil}[1]{\lceil #1 \rceilf}
157+
157158
% Analysis
159+
\newcommand\openinterval[2]{\left]#1, #2\right[}
158160
%\newcommand\magnitude[1]{\left\lvert\, #1 \,\right\rvert}
159161
\newcommand\magnitude[1]{\abs{#1}}
160162
\newcommand{\norma}[2]{\norm{#2}_{#1}}
161163
%\renewcommand{\norm}[2]{\norm{#2}_{#1}}
162164
\def\weakstar{\text{weak}^\ast\text{-}}
165+
163166
% Topology
164167
\newcommand{\localbase}[1]{\mathscr #1}
165168

@@ -179,14 +182,21 @@
179182
\def\iif{{\bf iff} }
180183
\def\IIF{{\bf iff}}
181184
\def\wlg{{\bf wlg }} % Without loss og generality
185+
186+
% TODO: Make choices, be consistent
182187
\def\then{\Rightarrow}
183188
\def\THEN{\Rightarrow}
184189
\def\THEREFORE{\Rightarrow}
185190
\def\therefore{\Rightarrow}
186191
\def\since{\Leftarrow}
192+
\def\because{\Leftarrow}
187193
\def\IF{\Leftarrow}
188194
\renewcommand{\iff}{\Leftrightarrow}
189195

196+
% Misc
197+
% phi is varphi:
198+
\renewcommand{\phi}{\varphi}
199+
190200
% Citations
191201
\newcommand{\citehere}[2]{\overset{(#1)}{#2}}
192202
\newcommand{\citeq}[1]{\citehere{#1}{=}}
@@ -221,6 +231,10 @@
221231
\def\AUTHOR{gitcordier}
222232

223233
\begin{document}
234+
% Changes the "proof" in proof environment.
235+
% source: https://tex.stackexchange.com/questions/8089/changing-style-of-proof
236+
\let\oldproofname=\proofname
237+
\renewcommand{\proofname}{{\rm \small PROOF}}
224238
%\begin{abstract}
225239
% \input{\ROOT/abstract.tex}
226240
%\end{abstract}

chapter_1/1_12.tex

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
11
\textit{Suppose %
22
%
3-
$d_1(x,y) = |x-y|, d_2(x,y) = |\varphi(x) - \varphi(y)|$, %
3+
$d_1(x,y) = |x-y|, d_2(x,y) = |\phi(x) - \phi(y)|$, %
44
%
55
where %
66
%
7-
$\varphi(x)={x}/{(1+\lvert x \rvert )}$. %
7+
$\phi(x)={x}/{(1+\lvert x \rvert )}$. %
88
%
99
Prove that $d_1$ and $d_2$ are metrics on $\R$ which induce the same %
1010
topology, although $d_1$ is complete and $d_2$ is not.
@@ -20,25 +20,25 @@
2020
\end{align}
2121
%
2222
Next, remark that the monotonically increasing mapping %
23-
$\varphi: \R \to ]\minus 1, 1[$ is odd and that %
23+
$\phi: \R \to ]\minus 1, 1[$ is odd and that %
2424
%
2525
\begin{align}\label{1_12_1}
26-
\varphi(x) \tendsto{x}{\infty} 1.
26+
\phi(x) \tendsto{x}{\infty} 1.
2727
\end{align}
2828
%
29-
$\varphi$ is therefore a $\tau_1$-homeomorphsim of $\R$ onto $]\minus 1, 1[$. %
29+
$\phi$ is therefore a $\tau_1$-homeomorphsim of $\R$ onto $]\minus 1, 1[$. %
3030
%
3131
A first consequence is that, at fixed $a \in \R$, given any positive scalar %
32-
$\epsilon$, the $\tau_1$-continuousness of $\varphi$ supplies an open ball %
33-
$B_1(a,\eta)$ on which $|\varphi(a)-\varphi|<\epsilon$. %
32+
$\epsilon$, the $\tau_1$-continuousness of $\phi$ supplies an open ball %
33+
$B_1(a,\eta)$ on which $|\phi(a)-\phi|<\epsilon$. %
3434
In terms of balls $B_i$, this reads as follows, %
3535
%
3636
\begin{align}
3737
B_1(a,\eta) \subset B_2(a,\epsilon).
3838
\end{align}
3939
%
4040
The second consequence is that the $\tau_1$-continuousness of %
41-
$\varphi^{\, \minus 1}$ yields similar inclusions %
41+
$\phi^{\, \minus 1}$ yields similar inclusions %
4242
%
4343
\begin{align} \label{1_12_6}
4444
\quad B_2(a, \epsilon') \subset B_1 (a, \eta')
@@ -56,7 +56,7 @@
5656
Finally, all inequalities $n < i < j$ over $\N$ together yield %
5757
%
5858
\begin{align}
59-
d_2(i, j)=|\varphi(i)-\varphi(j)| \tendsto{n}{\infty} 0.
59+
d_2(i, j)=|\phi(i)-\phi(j)| \tendsto{n}{\infty} 0.
6060
\quad \end{align}
6161
%
6262
The sequence $n=0, 1, 2, \dots$ is therefore $\tau_2$-Cauchy. We will %
@@ -67,7 +67,7 @@
6767
\begin{align}
6868
d_2(0, \lambda) \geq
6969
d_2(0, n) - d_2(\lambda, n) =
70-
\varphi(n) -d_2(\lambda, n) \tendsto{n}{\infty} 1.
70+
\phi(n) -d_2(\lambda, n) \tendsto{n}{\infty} 1.
7171
\end{align}
7272
%
7373
We then conclude that $d_2$ fails to be complete.

chapter_1/1_7.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -106,22 +106,22 @@ \subsection{Proof (with the given hint)}
106106
Indeed, the hint suggests that there exists a bijection %
107107
%
108108
\begin{align}
109-
\varphi: \bigl\{(\theta_n): \theta_n \xrightarrow{n\infty} 0\bigr\} & \to [0, 1] \\
109+
\phi: \bigl\{(\theta_n): \theta_n \xrightarrow{n\infty} 0\bigr\} & \to [0, 1] \\
110110
(\theta_1, \dots, \theta_n, \dots) & \mapsto x. \nonumber
111111
\end{align}
112112
%
113113
\begin{proof}
114114
We set %
115115
%
116116
\begin{align}
117-
f_n(x) & \Def \theta_n \quad \bigl(x = \varphi(\theta_1, \dots, \theta_n, \dots)\bigr)
117+
f_n(x) & \Def \theta_n \quad \bigl(x = \phi(\theta_1, \dots, \theta_n, \dots)\bigr)
118118
\end{align}
119119
%
120120
so that $\singleton{f_n}$ tends pointwise to $0$. Note that, with this construction, the special case %
121121
%
122122
\begin{align}
123123
x_\gamma %
124-
\Def \varphi\Bigl(1 / \sqrt{1 + \magnitude{\gamma_1}}, \dots, 1 / \sqrt{1 + \magnitude{\gamma_n}}, \dots\Bigr) %
124+
\Def \phi\Bigl(1 / \sqrt{1 + \magnitude{\gamma_1}}, \dots, 1 / \sqrt{1 + \magnitude{\gamma_n}}, \dots\Bigr) %
125125
\end{align}
126126
%
127127
outputs %

chapter_2/2_3/2_3.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030
\newline\newline\noindent
3131
We will also consider the case $p=0$. Since all supports of %
3232
%
33-
$\phi, \varphi', \varphi'', \dots, $ are in $K$, %
33+
$\phi, \phi', \phi'', \dots, $ are in $K$, %
3434
%
3535
we make a specialization of the mean value theorem: %
3636
%

chapter_2/2_3/2_3_0_lemma.tex

Lines changed: 26 additions & 75 deletions
Original file line numberDiff line numberDiff line change
@@ -1,96 +1,47 @@
11
If
22
%
3-
$\phi\in\D_{[a, b]}$, then %
4-
%
3+
$\phi\in\D_{[a, b]}$, then, for all $k \leq p$ in $\N$,
54
%
65
\begin{align}\label{2.3. Mean value inequality.}
7-
\norma{\infty}{D^\alpha \phi}
8-
\leq
9-
\norma{\infty}{D^p \phi} \left(\frac{\lambda}{2}\right)^{p-\alpha}
10-
\quad (\alpha = 0, 1, \dots, p)
6+
\norma{\infty}{D^k \phi} \leq \norma{\infty}{D^p \phi} \left(\frac{b-a}{2}\right)^{p-k} .
117
\end{align}
128
%
13-
at every order $\integers{p}$; %
14-
where $\lambda$ is the length $\magnitude{b-a}$. %
15-
%
169
\begin{proof}
17-
Let $x_0$ be in %
18-
%
19-
$(a, b)$ .
20-
%
21-
We first consider the case $x_0 \leq c = (a+b)/2$: %
22-
The mean value theorem asserts that there exists %
23-
%
24-
$x_{1}$ ($a <x_{1} < x_{0} $),
25-
%
26-
such that
10+
Choose $a < x_0 \leq (a+b)/2$ first. By the mean value theorem, there exists $x_1 \in \openinterval{a}{x_0}$ such that %
2711
%
2812
\begin{align}
29-
\phi(x_0) =\phi(x_0) - \phi(a)= D\phi(x_{1})(x_{0} -a).
13+
\phi(x_0) = \phi(x_0) - \phi(a)= D\phi(x_{1})(x_{0} - a).
3014
\end{align}
3115
%
32-
Since every %
33-
%
34-
$D^p\phi$ lies in $\D_{[a, b]}$, %
16+
Repeating the same reasoning for $D\phi, D^2 \phi, \dots, D^p \phi \in \D_{[a, b]}$ yields %
3517
%
36-
a straightforward proof by induction shows that there exists a partition %
18+
\begin{align}
19+
\phi(x_0) & = D^0 \phi(x_0) \\
20+
& = D^1\phi(x_{1})(x_0 - a) \\
21+
& = D^2\phi(x_{2})(x_1 - a)(x_0 - a) \\
22+
& \nonumber \mspace{10mu} \vdots \\
23+
& = D^p\phi(x_{p})(x_{p-1} - a) \cdots (x_0-a),
24+
\end{align}
3725
%
38-
$a < \cdots < x_p < \cdots < x_0 $
26+
for some $x_1, \dots ,x_p \in \openinterval{a}{x_0}$. Hence %
3927
%
40-
such that
41-
\begin{align}
42-
\phi(x_0) & = D^0 \phi(x_0) \\
43-
& = D^1\phi(x_{1})(x_{0} - a ) \\
44-
% & = D^2\phi(x_{2})(x_{0} - a )(x_{1} - a)\\
45-
& = \cdots \nonumber\\
46-
& = D^p\phi(x_{p})(x_{0} - a)\cdots(x_{p-1}-a),
47-
\end{align}
48-
%
49-
for all $p$. %
50-
More compactly,
51-
%
52-
\begin{align}
53-
D^\alpha \phi (x_0) = D^p\phi(x_p) \prod_{k= \alpha}^{p-1}(x_k - a);
54-
%(x_\alpha -a )\cdots (x_{p-1} -a).
55-
\end{align}
28+
\begin{align}\label{2.3. Mean Value (1).}
29+
\magnitude{\phi(x_0)} \leq \norma{\infty}{D^p \phi} \left(\frac{b-a}{2}\right)^p .
30+
\end{align}
5631
%
57-
which yields,
58-
%
59-
\begin{align}\label{2.3. Mean Value (1).}
60-
\lvert D^\alpha \phi(x) \rvert
61-
\leq
62-
\norma{\infty}{D^p \phi}
63-
\left(\frac{\lambda}{2}\right)^{p-\alpha}
64-
\quad (x \in [a, c])
65-
\end{align}
66-
%
67-
The case $x_0 \geq c$ outputs a ``reversed'' result, with %
68-
%
69-
$b > \cdots > x_p > \cdots > x_0$ %
70-
%
71-
and $x_k -b$ playing the role of $x_k-a$: %
32+
Similarly, if $b > x_0 \geq (a+b)/2$ (interchanging the roles of $a$ and $b$), the same inequality (\ref{2.3. Mean Value (1).}) holds. %
7233
So, %
7334
%
74-
\begin{align}\label{2.3. Mean Value (2).}
75-
\lvert D^\alpha \phi(x) \rvert
76-
\leq
77-
\norma{\infty}{D^p \phi}
78-
\left(\frac{\lambda}{2}\right)^{p-\alpha}
79-
% \quad (x \in [c, b]).
80-
\end{align}
81-
%
82-
Finally, we combine %
83-
%
84-
(\ref{2.3. Mean Value (1).}) with %
85-
(\ref{2.3. Mean Value (2).}) %
35+
\begin{align}\label{2.3. Mean value (2).}
36+
\magnitude{\phi(x_0)} \leq \norma{\infty}{D^p \phi} \left(\frac{b-a}{2}\right)^p \quad ( a < x_0 < b ),
37+
\end{align}
8638
%
87-
and so obtain %
39+
which establishes the case $k=0$. %
40+
Finally, applying (\ref{2.3. Mean value (2).}) to $D^k \phi $ in place of $\phi$ gives %
8841
%
89-
\begin{align}
90-
\norma{\infty}{D^\alpha \phi}
91-
\leq
92-
\norma{\infty}{D^p \phi}
93-
\left(\frac{\lambda}{2}\right)^{p-\alpha}.
94-
\end{align}
42+
\begin{align}
43+
\norma{\infty}{D^k \phi} \leq \norma{\infty}{D^p \phi} \left(\frac{b-a}{2}\right)^{p-k}
44+
\end{align}
9545
%
46+
for all $0 \leq k \leq p$. %
9647
\end{proof}

0 commit comments

Comments
 (0)