Skip to content

Commit 48a322f

Browse files
committed
UPDATE: clean up.
1 parent cd82eb6 commit 48a322f

35 files changed

+164
-164
lines changed

FA_DM.pdf

62 Bytes
Binary file not shown.

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ Feel free to get copies of this great book by yourself.
4444
## Files
4545

4646
- FA_DM.pdfOutput from [Xelatex](https://www.tug.org) compilation.You can also get an html output from
47-
[Hevea](http://hevea.inria.fr) compilation; see HOWTO.
47+
[Hevea](http://hevea.inria.fr) compilation, see HOWTO.
4848
- FA_DM.tex
4949
- FA_mainmatter.tex
5050
- FA_chapter_1.tex

chapter_1/1_1.tex

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
\begin{enumerate}
77
\item{If $x,\,y\in X$ there is a unique $z\in X$ such that $x+z=y$.}
88
\item{ $0\cdot x=0=\alpha\cdot 0 \quad (\alpha\in\field, x\in X)$.}
9-
\item{ $2A\subseteq A+A$.}
9+
\item{ $2A\subset A+A$.}
1010
\item{ $A$ is convex if and only if $(s+t)A=sA+tA$ %
1111
for all positive scalars $s$ and $t$.}
1212
\item{ Every union (and intersection) of balanced sets is balanced.}
@@ -25,7 +25,7 @@
2525
\begin{enumerate}
2626
%: (a)
2727
\item Such property only depends on the group structure of $X$: Each $x$ in
28-
$X$ has an opposite $\minus x$. Let $x'$ be any opposite of $x$, so that
28+
$X$ has an opposite $\minus x$. Let $x'$ be any opposite of $x$so that
2929
${x-x=0}=x+x'$. %
3030
Thus, $\minus x +x -x = \minus x + x + x' $, %
3131
which is equivalent to $\minus x = x'$. So is established the uniqueness of %
@@ -70,7 +70,7 @@
7070
\begin{align}\label{double lies in sum}
7171
2A = \{2x: x\in A \}
7272
= \{x + x: x \in A \}
73-
\subseteq \{ x + y : (x,\,y) \in A^2 \}
73+
\subset \{ x + y : (x,\,y) \in A^2 \}
7474
= A+A
7575
\end{align}
7676
%
@@ -79,7 +79,7 @@
7979
\item If $A$ is convex, then %
8080
%
8181
\begin{align}
82-
A \subseteq \frac{s}{s+t} A + \frac{t}{s+t} A \subseteq A;
82+
A \subset \frac{s}{s+t} A + \frac{t}{s+t} A \subset A;
8383
\end{align}
8484
%
8585
which is %
@@ -104,33 +104,33 @@
104104
(or simply use the fact that $+$ is commutative!).
105105
So ends the proof. %
106106
%: (e)
107-
\item Let $A$ range over $B$ a collection of balanced subsets, so that %
107+
\item Let $A$ range over $B$ a collection of balanced subsetsso that %
108108
%
109109
\begin{align}
110-
\alpha \bigcap B \subseteq \alpha A \subseteq A \subseteq \bigcup B
110+
\alpha \bigcap B \subset \alpha A \subset A \subset \bigcup B
111111
\end{align}
112112
%
113113
for all scalars $\alpha$ of magnitude $\leq 1$. %
114-
The inclusion $\alpha \bigcap B \subseteq A$ establishes the first part. %
114+
The inclusion $\alpha \bigcap B \subset A$ establishes the first part. %
115115
Now remark that %
116116
%
117117
\begin{align}
118-
\alpha A \subseteq \bigcup {B}
118+
\alpha A \subset \bigcup {B}
119119
\end{align}
120120
%
121121
implies %
122122
%
123123
\begin{align}
124-
\alpha \bigcup {B} \subseteq \bigcup {B};
124+
\alpha \bigcup {B} \subset \bigcup {B};
125125
\end{align}
126126
which achieves the proof. %
127127
%
128128
%: (f)
129-
\item Let $A$ range over $C$ a collection of convex subsets, so that %
129+
\item Let $A$ range over $C$ a collection of convex subsetsso that %
130130
%
131131
\begin{align}
132-
(s+t) \bigcap C \subseteq s\bigcap C + t\bigcap C \subseteq sA + tA
133-
\overset{(d)}{\subseteq} (s+t)A
132+
(s+t) \bigcap C \subset s\bigcap C + t\bigcap C \subset sA + tA
133+
\overset{(d)}{\subset} (s+t)A
134134
\end{align}
135135
%
136136
for all positives scalars $\mathit{s}$, $\mathit{t}$. %
@@ -159,7 +159,7 @@
159159
%
160160
So, $x_1, x_2$ are now elements of the convex set $C_2$. %
161161
Every convex combination of our $x_i$'s is then in %
162-
$C_2 \subseteq \bigcup \Gamma$. Hence (g). %
162+
$C_2 \subset \bigcup \Gamma$. Hence (g). %
163163
%
164164
%: (h)
165165
\item Simply remark that
@@ -174,7 +174,7 @@
174174
\item Given any $\alpha$ from the closed unit disc, %
175175
%
176176
\begin{align}
177-
\alpha(A+B)=\alpha A+ \alpha B \subseteq A+B.
177+
\alpha(A+B)=\alpha A+ \alpha B \subset A+B.
178178
\end{align}
179179
%
180180
There is no more to prove: $A+B$ is balanced. %
@@ -197,7 +197,7 @@
197197
To prove the lemma, let $\mathit{S}$ %
198198
run through all nonempty subsets of $X$. %
199199
First, assume that (i) holds: Clearly, every $S$ is convex balanced. %
200-
Moreover, $S+S \subseteq S$. Conversely, $S = S + \{0\} \subseteq S + S $; %
200+
Moreover, $S+S \subset S$. Conversely, $S = S + \{0\} \subset S + S $; %
201201
which establishes (ii). %
202202
%
203203
Next, assume (only) (ii): A proof by induction shows that %
@@ -211,9 +211,9 @@
211211
Thus, %
212212
%
213213
\begin{align}
214-
nS \overset{(\ref{induction nS})}{\subseteq} S
215-
\subseteq n\,\lambda S
216-
\subseteq n^2 S,
214+
nS \overset{(\ref{induction nS})}{\subset} S
215+
\subset n\,\lambda S
216+
\subset n^2 S,
217217
\end{align}
218218
%
219219
since $S$ is balanced. %
@@ -224,7 +224,7 @@
224224
Dividing the latter inclusions by $n$ shows that %
225225
%
226226
\begin{align}
227-
S \subseteq \lambda S \subseteq nS \overset{(\ref{induction nS})}{\subseteq} S,
227+
S \subset \lambda S \subset nS \overset{(\ref{induction nS})}{\subset} S,
228228
\end{align}
229229
%
230230
which is (iii). Finally, dropping (ii) in favor of (iii) leads to %
@@ -245,7 +245,7 @@
245245
%
246246
\begin{align}
247247
\alpha S + \beta S = 0S + 0S\overset{(b)}{=} \{0\}
248-
\overset{(b)}{=} 0S \subseteq S.
248+
\overset{(b)}{=} 0S \subset S.
249249
\end{align}
250250
%
251251
Hence (i), which achieves the lemma's proof. %
@@ -257,10 +257,10 @@
257257
First, remark that every member of $V$ is convex balanced: %
258258
So is $I$ (combine (e) with (f)). %
259259
%
260-
Next, let $\mathit{Y}$ range over $V$, so that %
260+
Next, let $\mathit{Y}$ range over $V$so that %
261261
%
262262
\begin{align}
263-
I + I \subseteq Y + Y \subseteq Y;
263+
I + I \subset Y + Y \subset Y;
264264
\end{align}
265265
%
266266
which yields
@@ -269,7 +269,7 @@
269269
I + I = I
270270
\end{align}
271271
%
272-
(the fact that $I = I + \{0\} \subseteq I + I$ was tacitely used). %
272+
(the fact that $I = I + \{0\} \subset I + I$ was tacitely used). %
273273
%
274274
It now follows from the lemma's (ii) $\Rightarrow$ (i) that %
275275
$I$ is a vector subspace of $X$. %
@@ -279,18 +279,18 @@
279279
%
280280
To show that $U$ is more specifically a vector subspace, %
281281
we first remark that such total order implies that either %
282-
$Z \subseteq Y$ or $Y \subseteq Z$, as $\mathit{Z}$ ranges over $V$. %
282+
$Z \subset Y$ or $Y \subset Z$, as $\mathit{Z}$ ranges over $V$. %
283283
A straightforward consequence is that
284284
%
285285
\begin{align}
286-
Y \subseteq Y + Z \subseteq Y\cup Z.
286+
Y \subset Y + Z \subset Y\cup Z.
287287
\end{align}
288288
%
289289
Another one is that $Y \cup Z$ ranges over $V$ as well. %
290290
Combined with the latter inclusions, this leads to %
291291
%
292292
\begin{align}
293-
U \subseteq U + U \subseteq U.
293+
U \subset U + U \subset U.
294294
\end{align}
295295
%
296296
It then follows from the lemma's (ii) $\Rightarrow$ (i) that %

chapter_1/1_10.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
%
2525
\begin{align}
2626
\label{definition of v}
27-
\sum_{e} V \subseteq W,
27+
\sum_{e} V \subset W,
2828
\end{align}
2929
%
3030
since addition is continuous. Moreover, for each $e$, there exists $x_e$ %
@@ -56,7 +56,7 @@
5656
We now come back to (\ref{definition of v}) and so conclude that %
5757
%
5858
\begin{align}
59-
y \in \sum_e \Lambda (V) \subseteq \Lambda(W)
59+
y \in \sum_e \Lambda (V) \subset \Lambda(W)
6060
\end{align}
6161
%
6262
for if $|y_e| < 1/s$; which proves (a) whether %
@@ -77,7 +77,7 @@
7777
theorem (see Exercise 1.9) asserts that $f$ is an isomorphism of $X/N$ %
7878
onto $Y$. %
7979
We now conclude with the help of [\ref{notations: vector spaces: finite-dimensional vector spaces}] %
80-
that $f$ is an homeomorphism of $X/N$ onto $Y$. %
80+
that $f$ is a homeomorphism of $X/N$ onto $Y$. %
8181
We have thus established that $f$ is continuous: So is $\Lambda = f\circ \pi$.
8282
\end{proof}
8383
% END

chapter_1/1_12.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -34,21 +34,21 @@
3434
In terms of balls $B_i$, this reads as follows, %
3535
%
3636
\begin{align}
37-
B_1(a,\eta) \subseteq B_2(a,\epsilon).
37+
B_1(a,\eta) \subset B_2(a,\epsilon).
3838
\end{align}
3939
%
4040
The second consequence is that the $\tau_1$-continuousness of %
4141
$\varphi^{\, \minus 1}$ yields similar inclusions %
4242
%
4343
\begin{align} \label{1_12_6}
44-
\quad B_2(a, \epsilon') \subseteq B_1 (a, \eta')
44+
\quad B_2(a, \epsilon') \subset B_1 (a, \eta')
4545
\end{align}
4646
%
4747
provided $\eta'>0$. At arbitrary $\epsilon$, the special case $\eta' = \eta$ %
4848
is the concatenation %
4949
%
5050
\begin{align}
51-
B_2(a, \epsilon') \subseteq B_1(a,\eta) \subseteq B_2(a,\epsilon);
51+
B_2(a, \epsilon') \subset B_1(a,\eta) \subset B_2(a,\epsilon);
5252
\end{align}
5353
%
5454
which proves that $\tau_1 =\tau_2$. %

chapter_1/1_14.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222
\begin{proof}%
2323
Let us equipp $\D_K$ with the inner product %
2424
%
25-
$\bra{f}\ket{g} = \int_0^1 f \, \bar{g}$, so that %
25+
$\bra{f}\ket{g} = \int_0^1 f \, \bar{g}$so that %
2626
$\bra{f}\ket{f} = \| f \|_2^2$. %
2727
%
2828
The following %
@@ -31,7 +31,7 @@
3131
\int_0^1 1\,| D^n f| \leq \| 1 \|_2 \| D^n f \|_2
3232
\end{align}
3333
%
34-
is then a Cauchy-Schwarz inequality; see Theorem 12.2 of \cite{FA}. %
34+
is then a Cauchy-Schwarz inequality, see Theorem 12.2 of \cite{FA}. %
3535
We so obtain %
3636
%
3737
\begin{align}\label{inequalities 1}
@@ -99,7 +99,7 @@
9999
The whole chain (\ref{inclusions}) then forces %
100100
%
101101
\begin{align}
102-
\tau_1 \subseteq \tau_2 \subseteq \tau_\infty \subseteq \tau_1;
102+
\tau_1 \subset \tau_2 \subset \tau_\infty \subset \tau_1;
103103
\end{align}
104104
%
105105
which achieves the proof.

0 commit comments

Comments
 (0)