Skip to content

Commit 40402d9

Browse files
committed
UPDATE: Rewrote 1.7, added a proof that uses the given hint. One small change in 2_15.tex.
1 parent 31cc7f0 commit 40402d9

File tree

2 files changed

+125
-114
lines changed

2 files changed

+125
-114
lines changed

chapter_1/1_7.tex

Lines changed: 115 additions & 104 deletions
Original file line numberDiff line numberDiff line change
@@ -1,183 +1,194 @@
1-
\textit{
2-
Let be $X$ the vector space of all complex functions on the unit interval %
3-
$[0, 1]$, topologized by the family of seminorms %
1+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
2+
% FunctionalAnalysis
3+
% 1_7.tex
4+
%
5+
% encoding: UTF-8
6+
% EOL: LF
7+
%
8+
% format: LaTeX
9+
% indent: spaces (2)
10+
% width: 12
11+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
12+
\textit{%
13+
Let be $X$ the vector space of all complex functions on the unit interval $[0, 1]$, topologized by the family of seminorms %
414
%
515
\begin{align}
6-
p_x(f)= |f(x)\ \quad (0\leq x\leq 1).\nonumber
16+
p_x(f)= \magnitude{f(x)} \quad (0\leq x\leq 1).\nonumber
717
\end{align}
818
%
9-
This topology is called the topology of pointwise convergence. %
10-
Justify this terminology. %
11-
%
12-
Show that there is a sequence $\{f_n\}$ in X such that (a) %
13-
%
14-
$\{f_n\}$ converges to $0$ as $n \to\infty$, %
15-
%
16-
but (b) if $\{\gamma_n\}$ is any sequence of scalars such that %
17-
%
18-
$\gamma_n\to\infty$ %
19-
%
20-
then $\{\gamma_n f_n\}$ does not converge to $0$. %
21-
(Use the fact that the collection of all complex sequences converging to $0$ %
22-
has the same cardinality as $[0, 1]$.) %
23-
%
24-
This shows that metrizability cannot be omited in (b) of Theorem 1.28.
19+
This topology is called the topology of pointwise convergence. Justify this terminology. Show that there is a sequence %
20+
$\singleton{f_n}$ in X such that (a) $\singleton{f_n}$ converges to $0$ as $n \to \infty$, but (b) if $\{\gamma_n\}$ is any %
21+
sequence of scalars such that $\gamma_n \to \infty$ then $\{\gamma_n f_n\}$ does not converge to $0$. (Use the fact that %
22+
the collection of all complex sequences converging to $0$ has the same cardinality as $[0, 1]$.) This shows that %
23+
metrizability cannot be omited in (b) of Theorem 1.28.
2524
}
2625
%
26+
27+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
28+
% First part: Justification of the terminology
29+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
30+
\subsection{Justification of the terminology}
2731
\begin{proof}
28-
The family of the seminorms $p_x$ is separating: %
29-
The collection $\mathscr{B}$ of all finite intersections of the sets %
32+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
33+
% A. tau-convergence => pointwise convergence.
34+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
35+
The family of the seminorms $p_x$ is separating: The collection $\mathscr{B}$ of all finite intersections of the sets %
3036
%
3137
\begin{align}
3238
V(x,k) \triangleq \{p_x < 2^{\minus k}\}
3339
\quad (x \in [0, 1], k=1, 2, 3, \dots)
3440
\end{align}
3541
%
36-
is therefore a local base for a topology $\tau$ on $X$; %
37-
see Section 1.37 of \cite{FA}. %
38-
So,
42+
is therefore a local base for a topology $\tau$ on $X$; see Section 1.37 of \cite{FA}. So,
3943
%
4044
\begin{align}
4145
%
4246
\label{Inequality boolean series}
4347
%
44-
\sum_{n=1}^\infty [f_n \notin \cap_{i=1}^m U_i] \leq
45-
\sum_{n=1}^\infty \sum_{i=1}^m [f_n \notin U_i] =
46-
\sum_{i=1}^m \sum_{n=1}^\infty [f_n \notin U_i]
47-
\quad (f_n \in X, U_i \in \tau).
48+
\sum_{n=1}^\infty \bigl[f_n \notin \cap_{i=1}^m U_i\bigr]
49+
\leq
50+
\sum_{n=1}^\infty \sum_{i=1}^m \bigl[f_n \notin U_i\bigr]
51+
=
52+
\sum_{i=1}^m \sum_{n=1}^\infty \bigl[f_n \notin U_i\bigr] \quad (f_n \in X, U_i \in \tau).
4853
\end{align}
4954
%
5055
Now assume that $\{f_n\}$ $\tau$-converges to some $f$, \ie
5156
%
5257
\begin{align}
5358
%
54-
\sum_{n=1}^\infty [f_n \notin f + W] < \infty \quad (W \in \mathscr{B}).
59+
\sum_{n=1}^\infty \bigl[f_n \notin f + W\bigr] < \infty \quad (W \in \mathscr{B}).
5560
\end{align}
56-
The special case %
57-
%
58-
$W = V(x, k)$ %
59-
%
60-
means that, given $k$, %
61-
%
62-
$|f_n(x) - f(x)| < 2^{\minus k}$ %
6361
%
64-
for almost all $n$. %
62+
The special case $W = V(x, k)$ means that, given $k$, $\magnitude{f_n(x) - f(x)} < 2^{\minus k}$ for almost all $n$. %
6563
In other words, $\{f_n(x)\}$ converges to $f(x)$. %
66-
%
64+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
65+
% B. tau-divergence => pointwise divergence.
66+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
6767
Conversely, assume that $\{f_n\}$ does not $\tau$-converges in $X$, \ie %
6868
%
6969
\begin{align}
7070
%
7171
\label{Divergence}
7272
%
73-
\forall f \in X, \exists W \in \localbase{B}:
74-
\sum_{n=1}^\infty [f_n \notin f + W] = \infty.
73+
\forall f \in X, \exists W \in \localbase{B}: \sum_{n=1}^\infty \bigl[f_n \notin f + W\bigr] = \infty.
7574
%
7675
\end{align}
7776
%
78-
$W$ is now the (nonempty) intersection of finitely many $V(x, k)$, say %
79-
%
80-
$V(x_1, k_1), \dots, V(x_m, k_m)$. %
81-
%
82-
Thus, %
77+
$W$ is then the intersection of some $V(x_1, k_1), \dots, V(x_m, k_m)$. Hence %
8378
%
8479
\begin{align}
85-
\sum_{i=1}^m \sum_{n=1}^\infty [f_n \notin f + V(x_i, k_i)]
86-
%
87-
\overset{(\ref{Inequality boolean series})}{\geq}
88-
%
89-
\sum_{n=1}^\infty [f_n \notin f + W]
90-
%
91-
\overset{(\ref{Divergence})}{=}
92-
%
93-
\infty .
80+
\infty
81+
\citeq{\ref{Divergence}} \sum_{n=1}^\infty \bigl[f_n \notin f + W\bigr]
82+
\citeleq{\ref{Inequality boolean series}} \sum_{i=1}^m \sum_{n=1}^\infty \bigl[f_n \notin f + V(x_i, k_i)\bigr].
9483
\end{align}
9584
%
96-
We can now conclude that, for some index $i$,
85+
It is now clear that %
9786
%
9887
\begin{align}
99-
\sum_{n=1}^\infty [f_n \notin f + V(x_i, k_i)] = \infty .
88+
\sum_{n=1}^\infty \bigl[f_n \notin f + V(x_i, k_i)\bigr] = \infty .
10089
\end{align}
10190
%
102-
In other words, $\{f_n(x_i)\}$ fails to converge to $f(x_i)$. We have so %
103-
proved that $\tau$-convergence is a rewording of pointwise convergence. %
91+
for some $i$. In other words, $\{f_n(x_i)\}$ fails to converge to $f(x_i)$. The overall conclusion is that %
92+
$\tau$-convergence is the $X$'s version of pointwise convergence. %
93+
\end{proof}
10494
%
95+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
10596
% SECOND PART
106-
We now establish the second part by constructing a specific sequence %
107-
$\{f_n\}$ that satisfies both (a) and (b). \\
108-
\\
109-
The proof will be based on the following well-known result: %
110-
Each irrational number $\alpha$ has a \textit{unique} binary expansion. %
111-
More precisely, there exists a bijection %
97+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
11298
%
113-
\begin{align}
114-
b: [0, 1] \setminus \Q &\to \set{\beta \in \{0, 1\}^{\N_+}}{\beta \text{ is not eventually periodic}}\\
115-
\alpha &\mapsto (\beta_1, \beta_2, \dots)\nonumber
116-
\end{align}
117-
%%
118-
where $(\beta_1, \beta_2, \dots)$ is the only bit stream such that %
99+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
100+
% First proof: Use the given hint
101+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
102+
\subsection{Proof (with the given hint)}
103+
We now prove the second part by constructing a specific sequence $\{f_n\}$ that simultaneously satisfies (a) and (b). %
104+
Indeed, the hint says that there exists a one-to-one and \textit{onto} mapping %
119105
%
120106
\begin{align}
121-
\label{definition of alpha}
122-
\alpha = \sum_{k=1}^\infty \beta_k 2^{\minus k}.
107+
\varphi: [0, 1] & \to \set{\theta}{\theta \in \R^{\N_+}, \lim_{\infty} \theta = 0}.\\
108+
x & \mapsto (\theta_1, \dots, \theta_n, \dots) \nonumber
123109
\end{align}
124110
%
125-
First, remark that $\beta_1 + \beta_2 + \dots = \infty$ then define %
111+
\begin{proof}
112+
We set (under the same notation)%
126113
%
127114
\begin{align}
128-
\label{definition of f_n(alpha)}
129-
%f_n(\Q) &\Def \singleton{0}, \\
130-
f_n(\alpha) &\Def \frac{1}{1 + \beta_1 + \dots + \beta_n}, \,\, f_n = 0 \text{ on } \Q,
115+
f_n(x) & \Def \theta_n \tendsto{n}{\infty} 0 \quad \bigl(x = \varphi^{\minus 1}(\theta_1, \dots, \theta_n, \dots)\bigr)
131116
\end{align}
132117
%
133-
so that $f_n$ tends to $0$ (pointwise). %
134-
%
135-
Independently, take an arbitrary %
118+
so that %
136119
%
137-
$\gamma_n \longrightarrow \infty$: %
120+
$x_\gamma = \varphi^{\minus 1}\Bigl( 1 / \sqrt{1 + \magnitude{\gamma_1}}, \dots,1 / \sqrt{1 + \magnitude{\gamma_n}}, \dots\Bigr)$ %
138121
%
139-
Given $\counting{p}$, $\gamma_n$ is greater than $2^p$ %
140-
for all but finitely many $n$. %
141-
%
142-
Next, we choose $n_p$ among those \textit{almost all} $n$ that are
143-
large enough to additionally satisfy %
122+
implies %
144123
%
145124
\begin{align}
146-
\label{definition of n_p}
147-
n - n_{p-1} > p,
125+
\gamma_n f_n(x_\gamma) = \gamma_n / \sqrt{1 + \magnitude{\gamma_n}} %
126+
\underset{\infty}{\sim} \sqrt{\gamma_n} %
127+
\tendsto{n}{\infty} \infty,
148128
\end{align}
149129
%
150-
provided $n_0=0$. This way, the distribution of %
130+
provided $\gamma_n \to \infty$. This proves (b), since
131+
%$\bigl(\gamma_n f_n(x_\gamma)\bigr)_n $ $\singleton{\gamma_nf_n(x_\gamma)}_{n=1}^{\infty}$
132+
$\set{\gamma_n f_n(x_\gamma)}{\counting{n}}$ diverges.
133+
\end{proof}
151134
%
152-
$n_1, n_2, \dots$, %
135+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
136+
% Second proof: No hint, the hard way.
137+
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
138+
\subsection{Proving it the hard way (no hint)}
139+
We will use the following simple proposition about binary expansions: each irrational has an eventually aperiodic binary %
140+
expansion. %
153141
%
154-
\textit{displays no periodic pattern}: %
155-
Setting $\beta_{\gamma, k} = [k \in \{n_1, n_2, \dots \}]$ yields %
142+
\begin{proof}
143+
Formally, there exists a one-to-one and \textit{onto} mapping %
144+
%
145+
\def\bin{\text{\fw bin}}
146+
\begin{align}
147+
\bin: [0, 1] \setminus \Q &\to \bigl\{\beta \in \{0, 1\}^{\N_+}: \beta \text{ is eventually aperiodic}\bigr\}\\
148+
v &\mapsto (\beta_1, \dots, \beta_n, \dots)\nonumber
149+
\end{align}
150+
%%
151+
where $(\beta_1, \dots, \beta_n, \dots)$ satisfies %
156152
%
157153
\begin{align}
158-
\alpha_\gamma & \Def \sum_{k=1}^\infty \beta_{\gamma, k} 2^{\, \minus k} \notin \Q.
154+
\label{definition of alpha}
155+
v &= \beta_1 / 2 + \cdots + \beta_n / 2^n + \cdots .
159156
\end{align}
160157
%
161-
Moreover, %
158+
First, note that $\beta_1 + \beta_2 + \beta_3 + \cdots = \infty$ then define (under the same notation)%
162159
%
163160
\begin{align}
164-
p &= \beta_{\gamma, 1} + \dots + \beta_{\gamma, n_1} + \dots + \beta_{\gamma, n_p}.
161+
\label{definition of f_n(alpha)}
162+
f_n(v) &\Def 1/2^{\beta_1 + \cdots + \beta_n} \tendsto{n}{\infty} 0.
165163
\end{align}
166164
%
167-
Hence %
165+
Now pick an arbitrary $\gamma_n \to \infty$: Given a positive integer $k$, $\gamma_n > 4^k$ for almost all $n$, %
166+
say $\tilde{n}$. Next, choose $n=n_k$ from $\singleton{\tilde{n}}$ so large that %
168167
%
169168
\begin{align}
170-
\gamma_{n_p} f_{n_{p}}(\alpha_\gamma)
171-
= \frac{\gamma_{n_p}}{p+1}
172-
> \frac{2^p}{p+1}
173-
\tendsto{p}{\infty} \infty.
169+
\label{definition of n_k}
170+
n_{k+1} - n_k > k + 1 \to \infty .
174171
\end{align}
175172
%
176-
There so exists a subsequence $\{\gamma_{n_p}\}$ that prevents %
173+
This way, $\chi = 1_{\{ n_1, n_2, \dots \}}$ \textit{is not eventually periodic on }$\N_+$! Moreover, one easily checks that %
174+
the specialization $\beta = \chi = \bin (v_\gamma)$ yields %
175+
%
176+
\begin{align} \label{p sum of bits}
177+
\beta_1 + \dots + \beta_{n_1} + \dots + \beta_{n_k} = k.
178+
\end{align}
177179
%
178-
$\{\gamma_{n_p} f_{\gamma_{n_p}}\}$ %
180+
Finally, combining (\ref{definition of f_n(alpha)}) with (\ref{p sum of bits}) shows that %
179181
%
180-
to converge pointwise to $0$. %
181-
Since $\{\gamma_{n}\}$ was arbitrary, this proves (b).
182+
\begin{align}
183+
\gamma_{n_k} f_{n_{k}}(v_\gamma)
184+
= {\gamma_{n_k}}/{2^k}
185+
> 4^k / 2 ^k
186+
> 2^k
187+
\tendsto{k}{\infty}\infty.
188+
\end{align}
189+
%
190+
As a conclusion, every $\gamma_n \to\infty$ contains a subsequence $\{\gamma_{n_k}\}$ that keeps %
191+
$\gamma_{n_k} f_{n_k}(v)$ away from $0$ (for some $v=v_\gamma$) when $k \to \infty$; which is (b).
182192
\end{proof}
193+
%
183194
% END

chapter_2/2_15.tex

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -18,20 +18,19 @@
1818
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
1919
Assume that $X = V_n \sqcup \overline{E}_n$ ($n=1, 2, 3, \dots$) such that %
2020
%
21-
\renewcommand{\labelenumi}{(\roman{enumi})}
22-
\begin{enumerate}
23-
\item $X = \overline{V}_n$;
24-
\item $ X\setminus Y = \bigcup_{n=1}^\infty E_n$.
25-
\end{enumerate}
26-
\renewcommand{\labelenumi}{(\alph{enumi})}
27-
%
28-
First, let $x$ range over $X$, so that $x + V_n$ is open and dense as well %
29-
(because%
21+
\renewcommand{\labelenumi}{(\roman{enumi})}
22+
\begin{enumerate}
23+
\item $X = \overline{V}_n$;
24+
\item $ X\setminus Y = \bigcup_{n=1}^\infty E_n$.
25+
\end{enumerate}
26+
\renewcommand{\labelenumi}{(\alph{enumi})}
27+
%
28+
First, let $x$ range over $X$, so that $x + V_n$ is open and dense as well (because%
3029
\footnote{
3130
This is also a special case of \citeresultFA{1.3 (b)}, where: %
3231
$X = x + X \subset \overline{x + V_n}$.
3332
}
34-
the translation by $x$ is an homeomorphism of $X$ onto $X$).
33+
the translation by $x$ is a homeomorphism of $X$ onto $X$).
3534
%
3635
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
3736
% B. Where Baire's theorem is involved.
@@ -69,6 +68,7 @@
6968
\end{align}
7069
%
7170
since $Y$ is a subspace (subgroup) of $X$. We have so established that %
71+
%
7272
\begin{align}
7373
X \subset Y,
7474
\end{align}

0 commit comments

Comments
 (0)