|
1 | | -\textit{ |
2 | | -Let be $X$ the vector space of all complex functions on the unit interval % |
3 | | -$[0, 1]$, topologized by the family of seminorms % |
| 1 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 2 | +% FunctionalAnalysis |
| 3 | +% 1_7.tex |
| 4 | +% |
| 5 | +% encoding: UTF-8 |
| 6 | +% EOL: LF |
| 7 | +% |
| 8 | +% format: LaTeX |
| 9 | +% indent: spaces (2) |
| 10 | +% width: 12 |
| 11 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 12 | +\textit{% |
| 13 | +Let be $X$ the vector space of all complex functions on the unit interval $[0, 1]$, topologized by the family of seminorms % |
4 | 14 | % |
5 | 15 | \begin{align} |
6 | | - p_x(f)= |f(x)\ \quad (0\leq x\leq 1).\nonumber |
| 16 | + p_x(f)= \magnitude{f(x)} \quad (0\leq x\leq 1).\nonumber |
7 | 17 | \end{align} |
8 | 18 | % |
9 | | -This topology is called the topology of pointwise convergence. % |
10 | | -Justify this terminology. % |
11 | | -% |
12 | | -Show that there is a sequence $\{f_n\}$ in X such that (a) % |
13 | | -% |
14 | | - $\{f_n\}$ converges to $0$ as $n \to\infty$, % |
15 | | -% |
16 | | -but (b) if $\{\gamma_n\}$ is any sequence of scalars such that % |
17 | | -% |
18 | | - $\gamma_n\to\infty$ % |
19 | | -% |
20 | | -then $\{\gamma_n f_n\}$ does not converge to $0$. % |
21 | | -(Use the fact that the collection of all complex sequences converging to $0$ % |
22 | | -has the same cardinality as $[0, 1]$.) % |
23 | | -% |
24 | | -This shows that metrizability cannot be omited in (b) of Theorem 1.28. |
| 19 | +This topology is called the topology of pointwise convergence. Justify this terminology. Show that there is a sequence % |
| 20 | +$\singleton{f_n}$ in X such that (a) $\singleton{f_n}$ converges to $0$ as $n \to \infty$, but (b) if $\{\gamma_n\}$ is any % |
| 21 | +sequence of scalars such that $\gamma_n \to \infty$ then $\{\gamma_n f_n\}$ does not converge to $0$. (Use the fact that % |
| 22 | +the collection of all complex sequences converging to $0$ has the same cardinality as $[0, 1]$.) This shows that % |
| 23 | +metrizability cannot be omited in (b) of Theorem 1.28. |
25 | 24 | } |
26 | 25 | % |
| 26 | + |
| 27 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 28 | +% First part: Justification of the terminology |
| 29 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 30 | +\subsection{Justification of the terminology} |
27 | 31 | \begin{proof} |
28 | | -The family of the seminorms $p_x$ is separating: % |
29 | | -The collection $\mathscr{B}$ of all finite intersections of the sets % |
| 32 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 33 | +% A. tau-convergence => pointwise convergence. |
| 34 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 35 | +The family of the seminorms $p_x$ is separating: The collection $\mathscr{B}$ of all finite intersections of the sets % |
30 | 36 | % |
31 | 37 | \begin{align} |
32 | 38 | V(x,k) \triangleq \{p_x < 2^{\minus k}\} |
33 | 39 | \quad (x \in [0, 1], k=1, 2, 3, \dots) |
34 | 40 | \end{align} |
35 | 41 | % |
36 | | -is therefore a local base for a topology $\tau$ on $X$; % |
37 | | -see Section 1.37 of \cite{FA}. % |
38 | | -So, |
| 42 | +is therefore a local base for a topology $\tau$ on $X$; see Section 1.37 of \cite{FA}. So, |
39 | 43 | % |
40 | 44 | \begin{align} |
41 | 45 | % |
42 | 46 | \label{Inequality boolean series} |
43 | 47 | % |
44 | | - \sum_{n=1}^\infty [f_n \notin \cap_{i=1}^m U_i] \leq |
45 | | - \sum_{n=1}^\infty \sum_{i=1}^m [f_n \notin U_i] = |
46 | | - \sum_{i=1}^m \sum_{n=1}^\infty [f_n \notin U_i] |
47 | | - \quad (f_n \in X, U_i \in \tau). |
| 48 | + \sum_{n=1}^\infty \bigl[f_n \notin \cap_{i=1}^m U_i\bigr] |
| 49 | + \leq |
| 50 | + \sum_{n=1}^\infty \sum_{i=1}^m \bigl[f_n \notin U_i\bigr] |
| 51 | + = |
| 52 | + \sum_{i=1}^m \sum_{n=1}^\infty \bigl[f_n \notin U_i\bigr] \quad (f_n \in X, U_i \in \tau). |
48 | 53 | \end{align} |
49 | 54 | % |
50 | 55 | Now assume that $\{f_n\}$ $\tau$-converges to some $f$, \ie |
51 | 56 | % |
52 | 57 | \begin{align} |
53 | 58 | % |
54 | | - \sum_{n=1}^\infty [f_n \notin f + W] < \infty \quad (W \in \mathscr{B}). |
| 59 | + \sum_{n=1}^\infty \bigl[f_n \notin f + W\bigr] < \infty \quad (W \in \mathscr{B}). |
55 | 60 | \end{align} |
56 | | -The special case % |
57 | | -% |
58 | | -$W = V(x, k)$ % |
59 | | -% |
60 | | -means that, given $k$, % |
61 | | -% |
62 | | -$|f_n(x) - f(x)| < 2^{\minus k}$ % |
63 | 61 | % |
64 | | -for almost all $n$. % |
| 62 | +The special case $W = V(x, k)$ means that, given $k$, $\magnitude{f_n(x) - f(x)} < 2^{\minus k}$ for almost all $n$. % |
65 | 63 | In other words, $\{f_n(x)\}$ converges to $f(x)$. % |
66 | | -% |
| 64 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 65 | +% B. tau-divergence => pointwise divergence. |
| 66 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
67 | 67 | Conversely, assume that $\{f_n\}$ does not $\tau$-converges in $X$, \ie % |
68 | 68 | % |
69 | 69 | \begin{align} |
70 | 70 | % |
71 | 71 | \label{Divergence} |
72 | 72 | % |
73 | | - \forall f \in X, \exists W \in \localbase{B}: |
74 | | - \sum_{n=1}^\infty [f_n \notin f + W] = \infty. |
| 73 | + \forall f \in X, \exists W \in \localbase{B}: \sum_{n=1}^\infty \bigl[f_n \notin f + W\bigr] = \infty. |
75 | 74 | % |
76 | 75 | \end{align} |
77 | 76 | % |
78 | | -$W$ is now the (nonempty) intersection of finitely many $V(x, k)$, say % |
79 | | -% |
80 | | - $V(x_1, k_1), \dots, V(x_m, k_m)$. % |
81 | | -% |
82 | | -Thus, % |
| 77 | +$W$ is then the intersection of some $V(x_1, k_1), \dots, V(x_m, k_m)$. Hence % |
83 | 78 | % |
84 | 79 | \begin{align} |
85 | | - \sum_{i=1}^m \sum_{n=1}^\infty [f_n \notin f + V(x_i, k_i)] |
86 | | - % |
87 | | - \overset{(\ref{Inequality boolean series})}{\geq} |
88 | | - % |
89 | | - \sum_{n=1}^\infty [f_n \notin f + W] |
90 | | - % |
91 | | - \overset{(\ref{Divergence})}{=} |
92 | | - % |
93 | | - \infty . |
| 80 | + \infty |
| 81 | + \citeq{\ref{Divergence}} \sum_{n=1}^\infty \bigl[f_n \notin f + W\bigr] |
| 82 | + \citeleq{\ref{Inequality boolean series}} \sum_{i=1}^m \sum_{n=1}^\infty \bigl[f_n \notin f + V(x_i, k_i)\bigr]. |
94 | 83 | \end{align} |
95 | 84 | % |
96 | | -We can now conclude that, for some index $i$, |
| 85 | +It is now clear that % |
97 | 86 | % |
98 | 87 | \begin{align} |
99 | | - \sum_{n=1}^\infty [f_n \notin f + V(x_i, k_i)] = \infty . |
| 88 | + \sum_{n=1}^\infty \bigl[f_n \notin f + V(x_i, k_i)\bigr] = \infty . |
100 | 89 | \end{align} |
101 | 90 | % |
102 | | -In other words, $\{f_n(x_i)\}$ fails to converge to $f(x_i)$. We have so % |
103 | | -proved that $\tau$-convergence is a rewording of pointwise convergence. % |
| 91 | +for some $i$. In other words, $\{f_n(x_i)\}$ fails to converge to $f(x_i)$. The overall conclusion is that % |
| 92 | +$\tau$-convergence is the $X$'s version of pointwise convergence. % |
| 93 | +\end{proof} |
104 | 94 | % |
| 95 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
105 | 96 | % SECOND PART |
106 | | -We now establish the second part by constructing a specific sequence % |
107 | | -$\{f_n\}$ that satisfies both (a) and (b). \\ |
108 | | -\\ |
109 | | -The proof will be based on the following well-known result: % |
110 | | -Each irrational number $\alpha$ has a \textit{unique} binary expansion. % |
111 | | -More precisely, there exists a bijection % |
| 97 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
112 | 98 | % |
113 | | -\begin{align} |
114 | | - b: [0, 1] \setminus \Q &\to \set{\beta \in \{0, 1\}^{\N_+}}{\beta \text{ is not eventually periodic}}\\ |
115 | | - \alpha &\mapsto (\beta_1, \beta_2, \dots)\nonumber |
116 | | -\end{align} |
117 | | -%% |
118 | | -where $(\beta_1, \beta_2, \dots)$ is the only bit stream such that % |
| 99 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 100 | +% First proof: Use the given hint |
| 101 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 102 | +\subsection{Proof (with the given hint)} |
| 103 | +We now prove the second part by constructing a specific sequence $\{f_n\}$ that simultaneously satisfies (a) and (b). % |
| 104 | +Indeed, the hint says that there exists a one-to-one and \textit{onto} mapping % |
119 | 105 | % |
120 | 106 | \begin{align} |
121 | | - \label{definition of alpha} |
122 | | - \alpha = \sum_{k=1}^\infty \beta_k 2^{\minus k}. |
| 107 | + \varphi: [0, 1] & \to \set{\theta}{\theta \in \R^{\N_+}, \lim_{\infty} \theta = 0}.\\ |
| 108 | + x & \mapsto (\theta_1, \dots, \theta_n, \dots) \nonumber |
123 | 109 | \end{align} |
124 | 110 | % |
125 | | -First, remark that $\beta_1 + \beta_2 + \dots = \infty$ then define % |
| 111 | +\begin{proof} |
| 112 | +We set (under the same notation)% |
126 | 113 | % |
127 | 114 | \begin{align} |
128 | | - \label{definition of f_n(alpha)} |
129 | | - %f_n(\Q) &\Def \singleton{0}, \\ |
130 | | - f_n(\alpha) &\Def \frac{1}{1 + \beta_1 + \dots + \beta_n}, \,\, f_n = 0 \text{ on } \Q, |
| 115 | + f_n(x) & \Def \theta_n \tendsto{n}{\infty} 0 \quad \bigl(x = \varphi^{\minus 1}(\theta_1, \dots, \theta_n, \dots)\bigr) |
131 | 116 | \end{align} |
132 | 117 | % |
133 | | -so that $f_n$ tends to $0$ (pointwise). % |
134 | | -% |
135 | | -Independently, take an arbitrary % |
| 118 | +so that % |
136 | 119 | % |
137 | | -$\gamma_n \longrightarrow \infty$: % |
| 120 | + $x_\gamma = \varphi^{\minus 1}\Bigl( 1 / \sqrt{1 + \magnitude{\gamma_1}}, \dots,1 / \sqrt{1 + \magnitude{\gamma_n}}, \dots\Bigr)$ % |
138 | 121 | % |
139 | | -Given $\counting{p}$, $\gamma_n$ is greater than $2^p$ % |
140 | | -for all but finitely many $n$. % |
141 | | -% |
142 | | -Next, we choose $n_p$ among those \textit{almost all} $n$ that are |
143 | | -large enough to additionally satisfy % |
| 122 | +implies % |
144 | 123 | % |
145 | 124 | \begin{align} |
146 | | - \label{definition of n_p} |
147 | | - n - n_{p-1} > p, |
| 125 | + \gamma_n f_n(x_\gamma) = \gamma_n / \sqrt{1 + \magnitude{\gamma_n}} % |
| 126 | + \underset{\infty}{\sim} \sqrt{\gamma_n} % |
| 127 | + \tendsto{n}{\infty} \infty, |
148 | 128 | \end{align} |
149 | 129 | % |
150 | | -provided $n_0=0$. This way, the distribution of % |
| 130 | +provided $\gamma_n \to \infty$. This proves (b), since |
| 131 | +%$\bigl(\gamma_n f_n(x_\gamma)\bigr)_n $ $\singleton{\gamma_nf_n(x_\gamma)}_{n=1}^{\infty}$ |
| 132 | +$\set{\gamma_n f_n(x_\gamma)}{\counting{n}}$ diverges. |
| 133 | +\end{proof} |
151 | 134 | % |
152 | | - $n_1, n_2, \dots$, % |
| 135 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 136 | +% Second proof: No hint, the hard way. |
| 137 | +% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % |
| 138 | +\subsection{Proving it the hard way (no hint)} |
| 139 | +We will use the following simple proposition about binary expansions: each irrational has an eventually aperiodic binary % |
| 140 | +expansion. % |
153 | 141 | % |
154 | | -\textit{displays no periodic pattern}: % |
155 | | -Setting $\beta_{\gamma, k} = [k \in \{n_1, n_2, \dots \}]$ yields % |
| 142 | +\begin{proof} |
| 143 | +Formally, there exists a one-to-one and \textit{onto} mapping % |
| 144 | +% |
| 145 | +\def\bin{\text{\fw bin}} |
| 146 | +\begin{align} |
| 147 | + \bin: [0, 1] \setminus \Q &\to \bigl\{\beta \in \{0, 1\}^{\N_+}: \beta \text{ is eventually aperiodic}\bigr\}\\ |
| 148 | + v &\mapsto (\beta_1, \dots, \beta_n, \dots)\nonumber |
| 149 | +\end{align} |
| 150 | +%% |
| 151 | +where $(\beta_1, \dots, \beta_n, \dots)$ satisfies % |
156 | 152 | % |
157 | 153 | \begin{align} |
158 | | - \alpha_\gamma & \Def \sum_{k=1}^\infty \beta_{\gamma, k} 2^{\, \minus k} \notin \Q. |
| 154 | + \label{definition of alpha} |
| 155 | + v &= \beta_1 / 2 + \cdots + \beta_n / 2^n + \cdots . |
159 | 156 | \end{align} |
160 | 157 | % |
161 | | -Moreover, % |
| 158 | +First, note that $\beta_1 + \beta_2 + \beta_3 + \cdots = \infty$ then define (under the same notation)% |
162 | 159 | % |
163 | 160 | \begin{align} |
164 | | - p &= \beta_{\gamma, 1} + \dots + \beta_{\gamma, n_1} + \dots + \beta_{\gamma, n_p}. |
| 161 | + \label{definition of f_n(alpha)} |
| 162 | + f_n(v) &\Def 1/2^{\beta_1 + \cdots + \beta_n} \tendsto{n}{\infty} 0. |
165 | 163 | \end{align} |
166 | 164 | % |
167 | | -Hence % |
| 165 | +Now pick an arbitrary $\gamma_n \to \infty$: Given a positive integer $k$, $\gamma_n > 4^k$ for almost all $n$, % |
| 166 | +say $\tilde{n}$. Next, choose $n=n_k$ from $\singleton{\tilde{n}}$ so large that % |
168 | 167 | % |
169 | 168 | \begin{align} |
170 | | - \gamma_{n_p} f_{n_{p}}(\alpha_\gamma) |
171 | | - = \frac{\gamma_{n_p}}{p+1} |
172 | | - > \frac{2^p}{p+1} |
173 | | - \tendsto{p}{\infty} \infty. |
| 169 | + \label{definition of n_k} |
| 170 | + n_{k+1} - n_k > k + 1 \to \infty . |
174 | 171 | \end{align} |
175 | 172 | % |
176 | | -There so exists a subsequence $\{\gamma_{n_p}\}$ that prevents % |
| 173 | +This way, $\chi = 1_{\{ n_1, n_2, \dots \}}$ \textit{is not eventually periodic on }$\N_+$! Moreover, one easily checks that % |
| 174 | +the specialization $\beta = \chi = \bin (v_\gamma)$ yields % |
| 175 | +% |
| 176 | +\begin{align} \label{p sum of bits} |
| 177 | + \beta_1 + \dots + \beta_{n_1} + \dots + \beta_{n_k} = k. |
| 178 | +\end{align} |
177 | 179 | % |
178 | | -$\{\gamma_{n_p} f_{\gamma_{n_p}}\}$ % |
| 180 | +Finally, combining (\ref{definition of f_n(alpha)}) with (\ref{p sum of bits}) shows that % |
179 | 181 | % |
180 | | -to converge pointwise to $0$. % |
181 | | -Since $\{\gamma_{n}\}$ was arbitrary, this proves (b). |
| 182 | +\begin{align} |
| 183 | + \gamma_{n_k} f_{n_{k}}(v_\gamma) |
| 184 | + = {\gamma_{n_k}}/{2^k} |
| 185 | + > 4^k / 2 ^k |
| 186 | + > 2^k |
| 187 | + \tendsto{k}{\infty}\infty. |
| 188 | +\end{align} |
| 189 | +% |
| 190 | +As a conclusion, every $\gamma_n \to\infty$ contains a subsequence $\{\gamma_{n_k}\}$ that keeps % |
| 191 | +$\gamma_{n_k} f_{n_k}(v)$ away from $0$ (for some $v=v_\gamma$) when $k \to \infty$; which is (b). |
182 | 192 | \end{proof} |
| 193 | +% |
183 | 194 | % END |
0 commit comments