Skip to content

Commit d324b0f

Browse files
Sigmoid activation function
1 parent fe33359 commit d324b0f

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

script.js

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ if (logData) {
5959
generator.model.add(tf.layers.dense({units: numParameters, inputShape: [numParameters]}));
6060
for (var i = 0; i < numLayers; i ++) {
6161
const layerSize = Math.round(imageVolume / (2 ** ((numLayers - 1) - i)));
62-
generator.model.add(tf.layers.dense({units: layerSize, activation: "tanh"}));
62+
generator.model.add(tf.layers.dense({units: layerSize, activation: "sigmoid"}));
6363
if (logData) {
6464
console.log(layerSize);
6565
}
@@ -90,7 +90,7 @@ if (logData) {
9090
discriminator.model.add(tf.layers.dense({units: imageVolume, inputShape: [imageVolume]}));
9191
for (var i = 0; i < numLayers; i ++) {
9292
const layerSize = Math.round(imageVolume / (2 ** (i + 1)));
93-
discriminator.model.add(tf.layers.dense({units: layerSize, activation: "tanh"}));
93+
discriminator.model.add(tf.layers.dense({units: layerSize, activation: "sigmoid"}));
9494
if (logData) {
9595
console.log(layerSize);
9696
}
@@ -240,7 +240,7 @@ trainingData.images[trainingData.images.length - 1].onload = function () {
240240
generatorLoss.dispose();
241241
discriminatorLoss.dispose();
242242

243-
// generator.optimizer.minimize(generator.calculateLoss);
243+
generator.optimizer.minimize(generator.calculateLoss);
244244
discriminator.optimizer.minimize(discriminator.calculateLoss);
245245

246246
// All this is just display code

0 commit comments

Comments
 (0)