|
| 1 | +#!/usr/bin/python |
| 2 | +# -*- coding: UTF-8 -*- |
| 3 | + |
| 4 | +from typing import List, Generator |
| 5 | +import heapq |
| 6 | + |
| 7 | + |
| 8 | +class Graph: |
| 9 | + def __init__(self, vertex_count: int) -> None: |
| 10 | + self.adj = [[] for _ in range(vertex_count)] |
| 11 | + |
| 12 | + def add_edge(self, s: int, t: int, w: int) -> None: |
| 13 | + edge = Edge(s, t, w) |
| 14 | + self.adj[s].append(edge) |
| 15 | + |
| 16 | + def __len__(self) -> int: |
| 17 | + return len(self.adj) |
| 18 | + |
| 19 | + |
| 20 | +class Vertex: |
| 21 | + def __init__(self, v: int, dist: int) -> None: |
| 22 | + self.id = v |
| 23 | + self.dist = dist |
| 24 | + |
| 25 | + def __gt__(self, other) -> bool: |
| 26 | + return self.dist > other.dist |
| 27 | + |
| 28 | + def __repr__(self) -> str: |
| 29 | + return str((self.id, self.dist)) |
| 30 | + |
| 31 | + |
| 32 | +class Edge: |
| 33 | + def __init__(self, source: int, target: int, weight: int) -> None: |
| 34 | + self.s = source |
| 35 | + self.t = target |
| 36 | + self.w = weight |
| 37 | + |
| 38 | + |
| 39 | +class VertexPriorityQueue: |
| 40 | + def __init__(self) -> None: |
| 41 | + self.vertices = [] |
| 42 | + |
| 43 | + def get(self) -> Vertex: |
| 44 | + return heapq.heappop(self.vertices) |
| 45 | + |
| 46 | + def put(self, v: Vertex) -> None: |
| 47 | + self.vertices.append(v) |
| 48 | + self.update_priority() |
| 49 | + |
| 50 | + def empty(self) -> bool: |
| 51 | + return len(self.vertices) == 0 |
| 52 | + |
| 53 | + def update_priority(self) -> None: |
| 54 | + heapq.heapify(self.vertices) |
| 55 | + |
| 56 | + def __repr__(self) -> str: |
| 57 | + return str(self.vertices) |
| 58 | + |
| 59 | + |
| 60 | +def dijkstra(g: Graph, s: int, t: int) -> int: |
| 61 | + size = len(g) |
| 62 | + |
| 63 | + pq = VertexPriorityQueue() # 节点队列 |
| 64 | + in_queue = [False] * size # 已入队标记 |
| 65 | + vertices = [ # 需要随时更新离s的最短距离的节点列表 |
| 66 | + Vertex(v, float('inf')) for v in range(size) |
| 67 | + ] |
| 68 | + predecessor = [-1] * size # 先驱 |
| 69 | + |
| 70 | + vertices[s].dist = 0 |
| 71 | + pq.put(vertices[s]) |
| 72 | + in_queue[s] = True |
| 73 | + |
| 74 | + while not pq.empty(): |
| 75 | + v = pq.get() |
| 76 | + if v.id == t: |
| 77 | + break |
| 78 | + for edge in g.adj[v.id]: |
| 79 | + if v.dist + edge.w < vertices[edge.t].dist: |
| 80 | + # 当修改了pq中的元素的优先级后: |
| 81 | + # 1. 有入队操作:触发了pq的堆化,此后出队可以取到优先级最高的顶点 |
| 82 | + # 2. 无入队操作:此后出队取到的顶点可能不是优先级最高的,会有bug |
| 83 | + # 为确保正确,需要手动更新一次 |
| 84 | + vertices[edge.t].dist = v.dist + edge.w |
| 85 | + predecessor[edge.t] = v.id |
| 86 | + pq.update_priority() # 更新堆结构 |
| 87 | + if not in_queue[edge.t]: |
| 88 | + pq.put(vertices[edge.t]) |
| 89 | + in_queue[edge.t] = True |
| 90 | + |
| 91 | + for n in print_path(s, t, predecessor): |
| 92 | + if n == t: |
| 93 | + print(t) |
| 94 | + else: |
| 95 | + print(n, end=' -> ') |
| 96 | + return vertices[t].dist |
| 97 | + |
| 98 | + |
| 99 | +def print_path(s: int, t: int, p: List[int]) -> Generator[int, None, None]: |
| 100 | + if t == s: |
| 101 | + yield s |
| 102 | + else: |
| 103 | + yield from print_path(s, p[t], p) |
| 104 | + yield t |
| 105 | + |
| 106 | + |
| 107 | +if __name__ == '__main__': |
| 108 | + g = Graph(6) |
| 109 | + g.add_edge(0, 1, 10) |
| 110 | + g.add_edge(0, 4, 15) |
| 111 | + g.add_edge(1, 2, 15) |
| 112 | + g.add_edge(1, 3, 2) |
| 113 | + g.add_edge(2, 5, 5) |
| 114 | + g.add_edge(3, 2, 1) |
| 115 | + g.add_edge(3, 5, 12) |
| 116 | + g.add_edge(4, 5, 10) |
| 117 | + print(dijkstra(g, 0, 5)) |
| 118 | + |
| 119 | + # 下面这个用例可以暴露更新队列元素优先级的问题 |
| 120 | + # g = Graph(4) |
| 121 | + # g.add_edge(0, 1, 18) |
| 122 | + # g.add_edge(0, 2, 3) |
| 123 | + # g.add_edge(2, 1, 1) |
| 124 | + # g.add_edge(1, 3, 5) |
| 125 | + # g.add_edge(2, 3, 8) |
| 126 | + # g.add_edge(0, 3, 15) |
| 127 | + # print(dijkstra(g, 0, 3)) |
0 commit comments