Skip to content

Commit e58f0e0

Browse files
authored
[DOCS] Synch or remove shared attributes (#2367)
1 parent 9f8fce2 commit e58f0e0

14 files changed

+30
-43
lines changed

docs/en/getting-started/index.asciidoc

Lines changed: 0 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,6 @@
11
= Getting Started
22

33
:doctype: book
4-
5-
:forum: https://discuss.elastic.co/c/x-pack
6-
:security-forum: https://discuss.elastic.co/c/shield
7-
:watcher-forum: https://discuss.elastic.co/c/watcher
8-
:monitoring-forum: https://discuss.elastic.co/c/marvel
9-
:graph-forum: https://discuss.elastic.co/c/graph
10-
11-
:blog-ref: https://www.elastic.co/blog/
12-
:wikipedia: https://en.wikipedia.org/wiki
13-
144
:kib-repo-dir: {kibana-root}/docs
155
:xes-repo-dir: {elasticsearch-root}/x-pack/docs/en
166
:es-repo-dir: {elasticsearch-root}/docs/reference

docs/en/stack/ml/anomaly-detection/anomaly-how-tos.asciidoc

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -28,16 +28,16 @@ The guides in this section describe some best practices for generating useful
2828
The blog posts listed below show how to get the most out of Elastic {ml}
2929
{anomaly-detect}.
3030

31-
* https://www.elastic.co/blog/sizing-machine-learning-with-elasticsearch[Sizing for {ml} with {es}]
32-
* https://www.elastic.co/blog/filtering-input-data-to-refine-machine-learning-jobs[Filtering input data to refine {ml-jobs}]
33-
* https://www.elastic.co/blog/temporal-vs-population-analysis-in-elastic-machine-learning[Temporal vs. population analysis in Elastic {ml}]
34-
* https://www.elastic.co/blog/using-elasticsearch-and-machine-learning-for-it-operations[Using {es} and {ml} for IT Operations]
35-
* https://www.elastic.co/blog/using-machine-learning-and-elasticsearch-for-security-analytics-deep-dive[Using {ml} and {es} for security analytics]
36-
* https://www.elastic.co/blog/augmenting-results-with-user-annotations-for-elastic-machine-learning[User annotations for Elastic {ml}]
37-
* https://www.elastic.co/blog/custom-elasticsearch-aggregations-for-machine-learning-jobs[Custom {es} aggregations for {ml-jobs}]
38-
* https://www.elastic.co/blog/analysing-linux-auditd-anomalies-with-auditbeat-and-elastic-stack-machine-learning[Analysing Linux auditd anomalies with Auditbeat and {ml}]
39-
* https://www.elastic.co/blog/how-to-optimize-elasticsearch-machine-learning-job-configurations-using-job-validation[How to optimize {es} {ml} job configurations using job validation]
40-
* https://www.elastic.co/blog/interpretability-in-ml-identifying-anomalies-influencers-root-causes[Interpretability in {ml}: Identifying anomalies, influencers, and root causes]
31+
* {blog-ref}sizing-machine-learning-with-elasticsearch[Sizing for {ml} with {es}]
32+
* {blog-ref}filtering-input-data-to-refine-machine-learning-jobs[Filtering input data to refine {ml-jobs}]
33+
* {blog-ref}temporal-vs-population-analysis-in-elastic-machine-learning[Temporal vs. population analysis in Elastic {ml}]
34+
* {blog-ref}using-elasticsearch-and-machine-learning-for-it-operations[Using {es} and {ml} for IT Operations]
35+
* {blog-ref}using-machine-learning-and-elasticsearch-for-security-analytics-deep-dive[Using {ml} and {es} for security analytics]
36+
* {blog-ref}augmenting-results-with-user-annotations-for-elastic-machine-learning[User annotations for Elastic {ml}]
37+
* {blog-ref}custom-elasticsearch-aggregations-for-machine-learning-jobs[Custom {es} aggregations for {ml-jobs}]
38+
* {blog-ref}analysing-linux-auditd-anomalies-with-auditbeat-and-elastic-stack-machine-learning[Analysing Linux auditd anomalies with Auditbeat and {ml}]
39+
* {blog-ref}how-to-optimize-elasticsearch-machine-learning-job-configurations-using-job-validation[How to optimize {es} {ml} job configurations using job validation]
40+
* {blog-ref}interpretability-in-ml-identifying-anomalies-influencers-root-causes[Interpretability in {ml}: Identifying anomalies, influencers, and root causes]
4141

4242
There are also some examples in the {ml} folder in the https://github.com/elastic/examples[examples repository].
4343

docs/en/stack/ml/anomaly-detection/ml-influencers.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ more than three. If you pick many influencers, the results can be overwhelming
4646
and there is a small overhead to the analysis.
4747

4848
Refer to
49-
https://www.elastic.co/blog/interpretability-in-ml-identifying-anomalies-influencers-root-causes[this blog post]
49+
{blog-ref}interpretability-in-ml-identifying-anomalies-influencers-root-causes[this blog post]
5050
for further details on influencers.
5151

5252

docs/en/stack/ml/anomaly-detection/ml-limitations.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ the Elastic {ml-features}. The limitations are grouped into four categories:
2929

3030
{ml-cap} uses Streaming SIMD Extensions (SSE) 4.2 instructions, so it works only
3131
on machines whose CPUs
32-
https://en.wikipedia.org/wiki/SSE4#Supporting_CPUs[support] SSE4.2. If you run
32+
{wikipedia}/SSE4#Supporting_CPUs[support] SSE4.2. If you run
3333
{es} on older hardware you must disable {ml} by setting `xpack.ml.enabled` to
3434
`false`. See {ref}/ml-settings.html[{ml-cap} settings in {es}].
3535

docs/en/stack/ml/df-analytics/ml-dfa-classification.asciidoc

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1048,8 +1048,8 @@ destination indices and {data-sources}.
10481048
=== Further readings
10491049

10501050
* https://github.com/elastic/examples/tree/master/Machine%20Learning/Analytics%20Jupyter%20Notebooks[{classanalysis-cap} example (Jupyter notebook)]
1051-
* https://www.elastic.co/blog/benchmarking-binary-classification-results-in-elastic-machine-learning[Benchmarking binary {classification} results in Elastic {ml}]
1052-
* https://www.elastic.co/blog/using-elastic-supervised-machine-learning-for-binary-classification[Using Elastic supervised {ml} for binary {classification}]
1053-
* https://www.elastic.co/blog/machine-learning-in-cybersecurity-training-supervised-models-to-detect-dga-activity[{ml-cap} in cybersecurity – part 1: Training supervised models to detect DGA activity]
1054-
* https://www.elastic.co/blog/machine-learning-in-cybersecurity-detecting-dga-activity-in-network-data[{ml-cap} in cybersecurity – part 2: Detecting DGA activity in network data]
1055-
* https://www.elastic.co/blog/supervised-and-unsupervised-machine-learning-for-dga-detection[Combining supervised and unsupervised machine learning for DGA detection]
1051+
* {blog-ref}benchmarking-binary-classification-results-in-elastic-machine-learning[Benchmarking binary {classification} results in Elastic {ml}]
1052+
* {blog-ref}using-elastic-supervised-machine-learning-for-binary-classification[Using Elastic supervised {ml} for binary {classification}]
1053+
* {blog-ref}machine-learning-in-cybersecurity-training-supervised-models-to-detect-dga-activity[{ml-cap} in cybersecurity – part 1: Training supervised models to detect DGA activity]
1054+
* {blog-ref}machine-learning-in-cybersecurity-detecting-dga-activity-in-network-data[{ml-cap} in cybersecurity – part 2: Detecting DGA activity in network data]
1055+
* {blog-ref}supervised-and-unsupervised-machine-learning-for-dga-detection[Combining supervised and unsupervised machine learning for DGA detection]

docs/en/stack/ml/df-analytics/ml-dfa-outlier-detection.asciidoc

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -560,7 +560,7 @@ the destination indices and {data-sources}.
560560
* If you want to see another example of {oldetection} in a Jupyter notebook,
561561
https://github.com/elastic/examples/tree/master/Machine%20Learning/Outlier%20Detection/Introduction[click here].
562562

563-
* https://www.elastic.co/blog/catching-malware-with-elastic-outlier-detection[This blog post]
563+
* {blog-ref}catching-malware-with-elastic-outlier-detection[This blog post]
564564
shows you how to catch malware using {oldetection}.
565565

566-
* https://www.elastic.co/blog/benchmarking-outlier-detection-in-elastic-machine-learning[Benchmarking {oldetection} results in Elastic {ml}]
566+
* {blog-ref}benchmarking-outlier-detection-in-elastic-machine-learning[Benchmarking {oldetection} results in Elastic {ml}]

docs/en/stack/ml/df-analytics/ml-dfa-overview.asciidoc

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -83,7 +83,7 @@ like {anomaly-detect} or {oldetection} – does not have this requirement.
8383
* {regression}: predicts **continuous, numerical values** like the response time
8484
of a web request.
8585
* {classification}: predicts **discrete, categorical values** like whether a
86-
https://www.elastic.co/blog/machine-learning-in-cybersecurity-training-supervised-models-to-detect-dga-activity[DNS request originates from a malicious or benign domain].
86+
{blog-ref}machine-learning-in-cybersecurity-training-supervised-models-to-detect-dga-activity[DNS request originates from a malicious or benign domain].
8787

8888

8989
[discrete]
@@ -181,4 +181,4 @@ the model is used to infer against the data and make predictions on it.
181181
<<ml-dfanalytics-classification-evaluation,classification>> models.
182182
* Find out how to deploy your model by using {infer} for
183183
<<ml-inference-class,{classification}>> and <<ml-inference-reg,{regression}>>.
184-
* https://www.elastic.co/blog/train-evaluate-monitor-infer-end-to-end-machine-learning-in-elastic[Train, evaluate, monitor, infer: End-to-end machine learning in Elastic].
184+
* {blog-ref}train-evaluate-monitor-infer-end-to-end-machine-learning-in-elastic[Train, evaluate, monitor, infer: End-to-end machine learning in Elastic].

docs/en/stack/ml/df-analytics/ml-dfa-regression-loss-functions.asciidoc

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,13 +12,13 @@ trees to compare the performance of various iterations of the model.
1212

1313
In the {stack}, there are three different types of loss function:
1414

15-
* https://en.wikipedia.org/wiki/Mean_squared_error[mean squared error (`mse`)]:
15+
* {wikipedia}/Mean_squared_error[mean squared error (`mse`)]:
1616
It is the default choice when no additional information about the data set is
1717
available.
1818
* mean squared logarithmic error (`msle`; a variation of `mse`): It is for
1919
cases where the target values are all positive with a long tail distribution
2020
(for example, prices or population).
21-
* https://en.wikipedia.org/wiki/Huber_loss#Pseudo-Huber_loss_function[Pseudo-Huber loss (`huber`)]:
21+
* {wikipedia}/Huber_loss#Pseudo-Huber_loss_function[Pseudo-Huber loss (`huber`)]:
2222
Use it when you want to prevent the model trying to fit the outliers instead of
2323
regular data.
2424

docs/en/stack/ml/df-analytics/ml-dfa-regression.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ more about loss functions.
155155
[[ml-dfanalytics-huber]]
156156
=== Pseudo-Huber loss
157157

158-
https://en.wikipedia.org/wiki/Huber_loss#Pseudo-Huber_loss_function[Pseudo-Huber loss metric]
158+
{wikipedia}/Huber_loss#Pseudo-Huber_loss_function[Pseudo-Huber loss metric]
159159
behaves as mean absolute error (MAE) for errors larger than a predefined value
160160
(defaults to `1`) and as mean squared error (MSE) for errors smaller than the
161161
predefined value. This loss function uses the `delta` parameter to define the

docs/en/stack/ml/df-analytics/ml-feature-importance.asciidoc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -70,5 +70,5 @@ prediction.
7070
* {feat-imp-cap} in the {stack} is calculated using the SHAP (SHapley Additive
7171
exPlanations) method as described in
7272
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf[Lundberg, S. M., & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In NeurIPS 2017].
73-
* https://www.elastic.co/blog/feature-importance-for-data-frame-analytics-with-elastic-machine-learning[{feat-imp-cap} for {dfanalytics} with Elastic {ml}].
73+
* {blog-ref}feature-importance-for-data-frame-analytics-with-elastic-machine-learning[{feat-imp-cap} for {dfanalytics} with Elastic {ml}].
7474
* https://github.com/elastic/examples/tree/master/Machine%20Learning/Feature%20Importance[Feature importance for {dfanalytics} (Jupyter notebook)].

0 commit comments

Comments
 (0)