|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Serving ONNX model with MXNet Model Server\n", |
| 8 | + "\n", |
| 9 | + "This tutorial dmeonstrates how to serve an ONNX model with MXNet Model Server. We'll use a pre-trained SqueezeNet model from ONNX model zoo. The same example can be easily applied to other ONNX models.\n", |
| 10 | + "\n", |
| 11 | + "Frameworks used in this tutorial:\n", |
| 12 | + "* [MXNet Model Server](https://github.com/awslabs/mxnet-model-server) that uses [MXNet](http://mxnet.io)\n", |
| 13 | + "* [ONNX](https://onnx.ai)" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "## Installing pre-requisites:\n", |
| 21 | + "Next we'll install the pre-requisites:\n", |
| 22 | + "* [ONNX](https://github.com/onnx/onnx)\n", |
| 23 | + "* [MXNetModelServer](https://github.com/awslabs/mxnet-model-server)" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": null, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "!conda install -y -c conda-forge onnx\n", |
| 33 | + "!pip install mxnet-model-server" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "markdown", |
| 38 | + "metadata": {}, |
| 39 | + "source": [ |
| 40 | + "## Downloading a pre-trained ONNX model\n", |
| 41 | + "\n", |
| 42 | + "Let's go ahead and download a aqueezenet onnx model into a new directory." |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": null, |
| 48 | + "metadata": { |
| 49 | + "scrolled": true |
| 50 | + }, |
| 51 | + "outputs": [], |
| 52 | + "source": [ |
| 53 | + "!mkdir squeezenet\n", |
| 54 | + "%cd squeezenet\n", |
| 55 | + "!curl -O https://s3.amazonaws.com/model-server/models/onnx-squeezenet/squeezenet.onnx" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "markdown", |
| 60 | + "metadata": {}, |
| 61 | + "source": [ |
| 62 | + "## Inspecting the ONNX model\n", |
| 63 | + "\n", |
| 64 | + "Let's make sure the exported ONNX model is well formed" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": null, |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "import onnx\n", |
| 74 | + "\n", |
| 75 | + "# Load the ONNX model\n", |
| 76 | + "model = onnx.load(\"squeezenet.onnx\")\n", |
| 77 | + "\n", |
| 78 | + "# Check that the IR is well formed, identified issues will error out\n", |
| 79 | + "onnx.checker.check_model(model)" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "markdown", |
| 84 | + "metadata": { |
| 85 | + "collapsed": true |
| 86 | + }, |
| 87 | + "source": [ |
| 88 | + "## Packaging the ONNX model for serving with MXNet Model Server (MMS)\n", |
| 89 | + "\n", |
| 90 | + "To serve the ONNX model with MMS, we will first need to prepare some files that will be bundled into a **Model Archive**. \n", |
| 91 | + "The Model Archive containes everything MMS needs to setup endpoints and serve the model. \n", |
| 92 | + "\n", |
| 93 | + "The files needed are:\n", |
| 94 | + "* squeezenet.onnx - the ONNX model file\n", |
| 95 | + "* signature.json - defining the input and output of the model\n", |
| 96 | + "* synset.txt - defining the set of classes the model was trained on, and returned by the model" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": null, |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "# Let's go ahead and download the files we need:\n", |
| 106 | + "!curl -O https://s3.amazonaws.com/model-server/models/onnx-squeezenet/signature.json\n", |
| 107 | + "!curl -O https://s3.amazonaws.com/model-server/models/onnx-squeezenet/synset.txt" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": null, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "# Let's take a peek into the **signature.json** file:\n", |
| 117 | + "!cat signature.json" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "# Let's take a peek into the synset.txt file:\n", |
| 127 | + "!head -n 10 synset.txt" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": null, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "# Let's package everything up into a Model Archive bundle\n", |
| 137 | + "!mxnet-model-export --model-name squeezenet --model-path .\n", |
| 138 | + "!ls -l squeezenet.model" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "markdown", |
| 143 | + "metadata": {}, |
| 144 | + "source": [ |
| 145 | + "## Serving the Model Archive with MXNet Model Server\n", |
| 146 | + "Now that we have the **Model Archive**, we can start the server and ask it to setup HTTP endpoints to serve the model, emit real-time operational metrics and more.\n", |
| 147 | + "\n", |
| 148 | + "We'll also test the server's endpoints." |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "code", |
| 153 | + "execution_count": null, |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [], |
| 156 | + "source": [ |
| 157 | + "# Spawning a new process to run the server\n", |
| 158 | + "import subprocess as sp\n", |
| 159 | + "server = sp.Popen(\"mxnet-model-server --models squeezenet=squeezenet.model\", shell=True)" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": {}, |
| 166 | + "outputs": [], |
| 167 | + "source": [ |
| 168 | + "# Check out the health endpoint\n", |
| 169 | + "!curl http://127.0.0.1:8080/ping" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "code", |
| 174 | + "execution_count": null, |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "# Download an image Trying out image classification\n", |
| 179 | + "!curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg\n", |
| 180 | + "!curl -X POST http://127.0.0.1:8080/squeezenet/predict -F \"input_0=@kitten.jpg\"" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": null, |
| 186 | + "metadata": {}, |
| 187 | + "outputs": [], |
| 188 | + "source": [ |
| 189 | + "# Lastly, we'll terminate the server\n", |
| 190 | + "server.terminate()" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "code", |
| 195 | + "execution_count": null, |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [], |
| 198 | + "source": [] |
| 199 | + } |
| 200 | + ], |
| 201 | + "metadata": { |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "Python 3", |
| 204 | + "language": "python", |
| 205 | + "name": "python3" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "codemirror_mode": { |
| 209 | + "name": "ipython", |
| 210 | + "version": 3 |
| 211 | + }, |
| 212 | + "file_extension": ".py", |
| 213 | + "mimetype": "text/x-python", |
| 214 | + "name": "python", |
| 215 | + "nbconvert_exporter": "python", |
| 216 | + "pygments_lexer": "ipython3", |
| 217 | + "version": "3.6.4" |
| 218 | + } |
| 219 | + }, |
| 220 | + "nbformat": 4, |
| 221 | + "nbformat_minor": 2 |
| 222 | +} |
0 commit comments