|
| 1 | +// Licensed to the .NET Foundation under one or more agreements. |
| 2 | +// The .NET Foundation licenses this file to you under the MIT license. |
| 3 | + |
| 4 | +using System.Diagnostics; |
| 5 | + |
| 6 | +namespace System |
| 7 | +{ |
| 8 | + public partial class Random |
| 9 | + { |
| 10 | + /// <summary> |
| 11 | + /// Provides an implementation used for compatibility with cases where either a) the |
| 12 | + /// sequence of numbers could be predicted based on the algorithm employed historically and |
| 13 | + /// thus expected (e.g. a specific seed used in tests) or b) where a derived type may |
| 14 | + /// reasonably expect its overrides to be called. The algorithm is based on a modified version |
| 15 | + /// of Knuth's subtractive random number generator algorithm. See https://github.com/dotnet/runtime/issues/23198 |
| 16 | + /// for a discussion of some of the modifications / discrepancies. |
| 17 | + /// </summary> |
| 18 | + private sealed class LegacyImpl : ImplBase |
| 19 | + { |
| 20 | + [ThreadStatic] |
| 21 | + private static Xoshiro128StarStarImpl? t_seedGenerator; |
| 22 | + |
| 23 | + /// <summary>Reference to the <see cref="Random"/> containing this implementation instance.</summary> |
| 24 | + /// <remarks>Used to ensure that any calls to other virtual members are performed using the Random-derived instance, if one exists.</remarks> |
| 25 | + private readonly Random _parent; |
| 26 | + private readonly int[] _seedArray; |
| 27 | + private int _inext; |
| 28 | + private int _inextp; |
| 29 | + |
| 30 | + public LegacyImpl(Random parent) : this(parent, (t_seedGenerator ??= new()).Next()) |
| 31 | + { |
| 32 | + } |
| 33 | + |
| 34 | + public LegacyImpl(Random parent, int Seed) |
| 35 | + { |
| 36 | + _parent = parent; |
| 37 | + |
| 38 | + // Initialize seed array. |
| 39 | + int[] seedArray = _seedArray = new int[56]; |
| 40 | + |
| 41 | + int subtraction = (Seed == int.MinValue) ? int.MaxValue : Math.Abs(Seed); |
| 42 | + int mj = 161803398 - subtraction; // magic number based on Phi (golden ratio) |
| 43 | + seedArray[55] = mj; |
| 44 | + int mk = 1; |
| 45 | + |
| 46 | + int ii = 0; |
| 47 | + for (int i = 1; i < 55; i++) |
| 48 | + { |
| 49 | + // The range [1..55] is special (Knuth) and so we're wasting the 0'th position. |
| 50 | + if ((ii += 21) >= 55) |
| 51 | + { |
| 52 | + ii -= 55; |
| 53 | + } |
| 54 | + |
| 55 | + seedArray[ii] = mk; |
| 56 | + mk = mj - mk; |
| 57 | + if (mk < 0) |
| 58 | + { |
| 59 | + mk += int.MaxValue; |
| 60 | + } |
| 61 | + |
| 62 | + mj = seedArray[ii]; |
| 63 | + } |
| 64 | + |
| 65 | + for (int k = 1; k < 5; k++) |
| 66 | + { |
| 67 | + for (int i = 1; i < 56; i++) |
| 68 | + { |
| 69 | + int n = i + 30; |
| 70 | + if (n >= 55) |
| 71 | + { |
| 72 | + n -= 55; |
| 73 | + } |
| 74 | + |
| 75 | + seedArray[i] -= seedArray[1 + n]; |
| 76 | + if (seedArray[i] < 0) |
| 77 | + { |
| 78 | + seedArray[i] += int.MaxValue; |
| 79 | + } |
| 80 | + } |
| 81 | + } |
| 82 | + |
| 83 | + _inextp = 21; |
| 84 | + } |
| 85 | + |
| 86 | + public override double Sample() => |
| 87 | + // Including the division at the end gives us significantly improved random number distribution. |
| 88 | + InternalSample() * (1.0 / int.MaxValue); |
| 89 | + |
| 90 | + public override int Next() => InternalSample(); |
| 91 | + |
| 92 | + public override int Next(int maxValue) => (int)(_parent.Sample() * maxValue); |
| 93 | + |
| 94 | + public override int Next(int minValue, int maxValue) |
| 95 | + { |
| 96 | + long range = (long)maxValue - minValue; |
| 97 | + return range <= int.MaxValue ? |
| 98 | + (int)(_parent.Sample() * range) + minValue : |
| 99 | + (int)((long)(GetSampleForLargeRange() * range) + minValue); |
| 100 | + } |
| 101 | + |
| 102 | + public override long NextInt64() |
| 103 | + { |
| 104 | + while (true) |
| 105 | + { |
| 106 | + // Get top 63 bits to get a value in the range [0, long.MaxValue], but try again |
| 107 | + // if the value is actually long.MaxValue, as the method is defined to return a value |
| 108 | + // in the range [0, long.MaxValue). |
| 109 | + ulong result = NextUInt64() >> 1; |
| 110 | + if (result != long.MaxValue) |
| 111 | + { |
| 112 | + return (long)result; |
| 113 | + } |
| 114 | + } |
| 115 | + } |
| 116 | + |
| 117 | + public override long NextInt64(long maxValue) => NextInt64(0, maxValue); |
| 118 | + |
| 119 | + public override long NextInt64(long minValue, long maxValue) |
| 120 | + { |
| 121 | + ulong exclusiveRange = (ulong)(maxValue - minValue); |
| 122 | + |
| 123 | + if (exclusiveRange > 1) |
| 124 | + { |
| 125 | + // Narrow down to the smallest range [0, 2^bits] that contains maxValue - minValue |
| 126 | + // Then repeatedly generate a value in that outer range until we get one within the inner range. |
| 127 | + int bits = Log2Ceiling(exclusiveRange); |
| 128 | + while (true) |
| 129 | + { |
| 130 | + ulong result = NextUInt64() >> (sizeof(long) * 8 - bits); |
| 131 | + if (result < exclusiveRange) |
| 132 | + { |
| 133 | + return (long)result + minValue; |
| 134 | + } |
| 135 | + } |
| 136 | + } |
| 137 | + |
| 138 | + Debug.Assert(minValue == maxValue || minValue + 1 == maxValue); |
| 139 | + return minValue; |
| 140 | + } |
| 141 | + |
| 142 | + /// <summary>Produces a value in the range [0, ulong.MaxValue].</summary> |
| 143 | + private unsafe ulong NextUInt64() |
| 144 | + { |
| 145 | + Span<byte> resultBytes = stackalloc byte[8]; |
| 146 | + NextBytes(resultBytes); |
| 147 | + return BitConverter.ToUInt64(resultBytes); |
| 148 | + } |
| 149 | + |
| 150 | + public override double NextDouble() => _parent.Sample(); |
| 151 | + |
| 152 | + public override float NextSingle() => (float)_parent.Sample(); |
| 153 | + |
| 154 | + public override void NextBytes(byte[] buffer) |
| 155 | + { |
| 156 | + for (int i = 0; i < buffer.Length; i++) |
| 157 | + { |
| 158 | + buffer[i] = (byte)InternalSample(); |
| 159 | + } |
| 160 | + } |
| 161 | + |
| 162 | + public override void NextBytes(Span<byte> buffer) |
| 163 | + { |
| 164 | + for (int i = 0; i < buffer.Length; i++) |
| 165 | + { |
| 166 | + buffer[i] = (byte)_parent.Next(); |
| 167 | + } |
| 168 | + } |
| 169 | + |
| 170 | + private int InternalSample() |
| 171 | + { |
| 172 | + int locINext = _inext; |
| 173 | + if (++locINext >= 56) |
| 174 | + { |
| 175 | + locINext = 1; |
| 176 | + } |
| 177 | + |
| 178 | + int locINextp = _inextp; |
| 179 | + if (++locINextp >= 56) |
| 180 | + { |
| 181 | + locINextp = 1; |
| 182 | + } |
| 183 | + |
| 184 | + int[] seedArray = _seedArray; |
| 185 | + int retVal = seedArray[locINext] - seedArray[locINextp]; |
| 186 | + |
| 187 | + if (retVal == int.MaxValue) |
| 188 | + { |
| 189 | + retVal--; |
| 190 | + } |
| 191 | + if (retVal < 0) |
| 192 | + { |
| 193 | + retVal += int.MaxValue; |
| 194 | + } |
| 195 | + |
| 196 | + seedArray[locINext] = retVal; |
| 197 | + _inext = locINext; |
| 198 | + _inextp = locINextp; |
| 199 | + |
| 200 | + return retVal; |
| 201 | + } |
| 202 | + |
| 203 | + private double GetSampleForLargeRange() |
| 204 | + { |
| 205 | + // The distribution of the double returned by Sample is not good enough for a large range. |
| 206 | + // If we use Sample for a range [int.MinValue..int.MaxValue), we will end up getting even numbers only. |
| 207 | + int result = InternalSample(); |
| 208 | + |
| 209 | + // We can't use addition here: the distribution will be bad if we do that. |
| 210 | + if (InternalSample() % 2 == 0) // decide the sign based on second sample |
| 211 | + { |
| 212 | + result = -result; |
| 213 | + } |
| 214 | + |
| 215 | + double d = result; |
| 216 | + d += int.MaxValue - 1; // get a number in range [0..2*int.MaxValue-1) |
| 217 | + d /= 2u * int.MaxValue - 1; |
| 218 | + return d; |
| 219 | + } |
| 220 | + } |
| 221 | + } |
| 222 | +} |
0 commit comments