@@ -115,9 +115,7 @@ If the schema of the data is not known at compile time, or too cumbersome, you c
115115var mlContext = new MLContext ();
116116
117117// Create the reader: define the data columns and where to find them in the text file.
118- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
119- {
120- Column = new [] {
118+ var reader = mlContext .Data .TextReader (new [] {
121119 // A boolean column depicting the 'label'.
122120 new TextLoader .Column (" IsOver50K" , DataKind .BL , 0 ),
123121 // Three text columns.
@@ -126,8 +124,8 @@ var reader = mlContext.Data.TextReader(new TextLoader.Arguments
126124 new TextLoader .Column (" MaritalStatus" , DataKind .TX , 3 )
127125 },
128126 // First line of the file is a header, not a data row.
129- HasHeader = true
130- } );
127+ hasHeader : true
128+ );
131129
132130// Now read the file (remember though, readers are lazy, so the actual reading will happen when the data is accessed).
133131var data = reader .Read (dataPath );
@@ -175,19 +173,17 @@ The code is very similar using the dynamic API:
175173var mlContext = new MLContext ();
176174
177175// Create the reader: define the data columns and where to find them in the text file.
178- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
179- {
180- Column = new [] {
176+ var reader = mlContext .Data .TextReader (new [] {
181177 // A boolean column depicting the 'label'.
182- new TextLoader .Column (" IsOver50k " , DataKind .BL , 0 ),
178+ new TextLoader .Column (" IsOver50K " , DataKind .BL , 0 ),
183179 // Three text columns.
184180 new TextLoader .Column (" Workclass" , DataKind .TX , 1 ),
185181 new TextLoader .Column (" Education" , DataKind .TX , 2 ),
186182 new TextLoader .Column (" MaritalStatus" , DataKind .TX , 3 )
187183 },
188184 // First line of the file is a header, not a data row.
189- HasHeader = true
190- } );
185+ hasHeader : true
186+ );
191187
192188var data = reader .Read (exampleFile1 , exampleFile2 );
193189```
@@ -365,19 +361,17 @@ You can also use the dynamic API to create the equivalent of the previous pipeli
365361var mlContext = new MLContext ();
366362
367363// Create the reader: define the data columns and where to find them in the text file.
368- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
369- {
370- Column = new [] {
364+ var reader = mlContext .Data .TextReader (new [] {
371365 // A boolean column depicting the 'label'.
372- new TextLoader .Column (" IsOver50k " , DataKind .BL , 0 ),
366+ new TextLoader .Column (" IsOver50K " , DataKind .BL , 0 ),
373367 // Three text columns.
374368 new TextLoader .Column (" Workclass" , DataKind .TX , 1 ),
375369 new TextLoader .Column (" Education" , DataKind .TX , 2 ),
376370 new TextLoader .Column (" MaritalStatus" , DataKind .TX , 3 )
377371 },
378372 // First line of the file is a header, not a data row.
379- HasHeader = true
380- } );
373+ hasHeader : true
374+ );
381375
382376// Start creating our processing pipeline. For now, let's just concatenate all the text columns
383377// together into one.
@@ -468,20 +462,18 @@ var mlContext = new MLContext();
468462
469463// Step one: read the data as an IDataView.
470464// First, we define the reader: specify the data columns and where to find them in the text file.
471- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
472- {
473- Column = new [] {
465+ var reader = mlContext .Data .TextReader (new [] {
474466 // We read the first 11 values as a single float vector.
475467 new TextLoader .Column (" FeatureVector" , DataKind .R4 , 0 , 10 ),
476468
477469 // Separately, read the target variable.
478470 new TextLoader .Column (" Target" , DataKind .R4 , 11 ),
479471 },
480472 // First line of the file is a header, not a data row.
481- HasHeader = true ,
473+ hasHeader : true ,
482474 // Default separator is tab, but we need a semicolon.
483- Separator = " ; "
484- } );
475+ separatorChar : ';'
476+ );
485477
486478// Now read the file (remember though, readers are lazy, so the actual reading will happen when the data is accessed).
487479var trainData = reader .Read (trainDataPath );
@@ -617,9 +609,7 @@ var mlContext = new MLContext();
617609
618610// Step one: read the data as an IDataView.
619611// First, we define the reader: specify the data columns and where to find them in the text file.
620- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
621- {
622- Column = new [] {
612+ var reader = mlContext .Data .TextReader (new [] {
623613 new TextLoader .Column (" SepalLength" , DataKind .R4 , 0 ),
624614 new TextLoader .Column (" SepalWidth" , DataKind .R4 , 1 ),
625615 new TextLoader .Column (" PetalLength" , DataKind .R4 , 2 ),
@@ -628,8 +618,8 @@ var reader = mlContext.Data.TextReader(new TextLoader.Arguments
628618 new TextLoader .Column (" Label" , DataKind .TX , 4 ),
629619 },
630620 // Default separator is tab, but the dataset has comma.
631- Separator = " , "
632- } );
621+ separatorChar : ','
622+ );
633623
634624// Retrieve the training data.
635625var trainData = reader .Read (irisDataPath );
@@ -910,17 +900,15 @@ You can achieve the same results using the dynamic API.
910900var mlContext = new MLContext ();
911901
912902// Define the reader: specify the data columns and where to find them in the text file.
913- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
914- {
915- Column = new [] {
903+ var reader = mlContext .Data .TextReader (new [] {
916904 // The four features of the Iris dataset will be grouped together as one Features column.
917905 new TextLoader .Column (" Features" , DataKind .R4 , 0 , 3 ),
918906 // Label: kind of iris.
919907 new TextLoader .Column (" Label" , DataKind .TX , 4 ),
920908 },
921909 // Default separator is tab, but the dataset has comma.
922- Separator = " , "
923- } );
910+ separatorChar : ','
911+ );
924912
925913// Read the training data.
926914var trainData = reader .Read (dataPath );
@@ -1027,9 +1015,8 @@ You can achieve the same results using the dynamic API.
10271015var mlContext = new MLContext ();
10281016
10291017// Define the reader: specify the data columns and where to find them in the text file.
1030- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
1031- {
1032- Column = new [] {
1018+ var reader = mlContext .Data .TextReader (new []
1019+ {
10331020 new TextLoader .Column (" Label" , DataKind .BL , 0 ),
10341021 // We will load all the categorical features into one vector column of size 8.
10351022 new TextLoader .Column (" CategoricalFeatures" , DataKind .TX , 1 , 8 ),
@@ -1038,8 +1025,8 @@ var reader = mlContext.Data.TextReader(new TextLoader.Arguments
10381025 // Let's also separately load the 'Workclass' column.
10391026 new TextLoader .Column (" Workclass" , DataKind .TX , 1 ),
10401027 },
1041- HasHeader = true
1042- } );
1028+ hasHeader : true
1029+ );
10431030
10441031// Read the data.
10451032var data = reader .Read (dataPath );
@@ -1154,14 +1141,13 @@ You can achieve the same results using the dynamic API.
11541141var mlContext = new MLContext ();
11551142
11561143// Define the reader: specify the data columns and where to find them in the text file.
1157- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
1158- {
1159- Column = new [] {
1144+ var reader = mlContext .Data .TextReader (new []
1145+ {
11601146 new TextLoader .Column (" IsToxic" , DataKind .BL , 0 ),
11611147 new TextLoader .Column (" Message" , DataKind .TX , 1 ),
11621148 },
1163- HasHeader = true
1164- } );
1149+ hasHeader : true
1150+ );
11651151
11661152// Read the data.
11671153var data = reader .Read (dataPath );
@@ -1274,9 +1260,8 @@ var mlContext = new MLContext();
12741260
12751261// Step one: read the data as an IDataView.
12761262// First, we define the reader: specify the data columns and where to find them in the text file.
1277- var reader = mlContext .Data .TextReader (new TextLoader .Arguments
1278- {
1279- Column = new [] {
1263+ var reader = mlContext .Data .TextReader (new []
1264+ {
12801265 // We read the first 11 values as a single float vector.
12811266 new TextLoader .Column (" SepalLength" , DataKind .R4 , 0 ),
12821267 new TextLoader .Column (" SepalWidth" , DataKind .R4 , 1 ),
@@ -1286,8 +1271,8 @@ var reader = mlContext.Data.TextReader(new TextLoader.Arguments
12861271 new TextLoader .Column (" Label" , DataKind .TX , 4 ),
12871272 },
12881273 // Default separator is tab, but the dataset has comma.
1289- Separator = " , "
1290- } );
1274+ separatorChar : ','
1275+ );
12911276
12921277// Read the data.
12931278var data = reader .Read (dataPath );
0 commit comments