|
| 1 | +use crate::data_types::Type; |
| 2 | +use crate::errors::Result; |
| 3 | +use crate::runtime_error; |
| 4 | +use crate::typed_value::TypedValue; |
| 5 | + |
| 6 | +pub struct Column { |
| 7 | + pub name: String, |
| 8 | + pub data: Vec<Option<String>>, |
| 9 | +} |
| 10 | + |
| 11 | +pub fn output_string_column( |
| 12 | + name: String, |
| 13 | + body: TypedValue, |
| 14 | + len: TypedValue, |
| 15 | + mask: &[u8], |
| 16 | +) -> Result<Column> { |
| 17 | + let n = match len.t.get_shape().as_slice() { |
| 18 | + &[n] => n as usize, |
| 19 | + _ => return Err(runtime_error!("len type {:?}", len.t)), |
| 20 | + }; |
| 21 | + let max_len = match body.t.get_shape().as_slice() { |
| 22 | + &[rows, max_len] => { |
| 23 | + if rows as usize != n { |
| 24 | + return Err(runtime_error!("len {:?} vs body {:?}", body.t, len.t)); |
| 25 | + } |
| 26 | + max_len as usize |
| 27 | + } |
| 28 | + _ => return Err(runtime_error!("body type {:?}", body.t)), |
| 29 | + }; |
| 30 | + if mask.len() != n { |
| 31 | + return Err(runtime_error!("mask.len() != n: {} vs {}", mask.len(), n)); |
| 32 | + } |
| 33 | + let len = len.value.to_flattened_array_u16(len.t)?; |
| 34 | + let mut data = vec![]; |
| 35 | + body.value.access_bytes(|bytes| { |
| 36 | + for i in 0..n { |
| 37 | + data.push(if mask[i] == 1 { |
| 38 | + let offset = i * max_len; |
| 39 | + let b = bytes[offset..offset + len[i] as usize].to_vec(); |
| 40 | + Some(String::from_utf8(b).map_err(|e| runtime_error!("UTF8 error: {e}"))?) |
| 41 | + } else { |
| 42 | + None |
| 43 | + }); |
| 44 | + } |
| 45 | + Ok(()) |
| 46 | + })?; |
| 47 | + Ok(Column { name, data }) |
| 48 | +} |
| 49 | + |
| 50 | +fn map_or_mask<T>( |
| 51 | + values: Vec<T>, |
| 52 | + mask: &[u8], |
| 53 | + f: impl Fn(T) -> String, |
| 54 | +) -> Result<Vec<Option<String>>> { |
| 55 | + let mut data = vec![]; |
| 56 | + for (value, &mask) in values.into_iter().zip(mask.iter()) { |
| 57 | + data.push(if mask == 0 { None } else { Some(f(value)) }); |
| 58 | + } |
| 59 | + Ok(data) |
| 60 | +} |
| 61 | + |
| 62 | +pub fn output_int_column(name: String, value: TypedValue, mask: &[u8]) -> Result<Column> { |
| 63 | + validate_shapes(&value, mask)?; |
| 64 | + let data = if value.t.get_scalar_type().is_signed() { |
| 65 | + let values = value.value.to_flattened_array_i64(value.t)?; |
| 66 | + map_or_mask(values, mask, |v| v.to_string())? |
| 67 | + } else { |
| 68 | + let values = value.value.to_flattened_array_u64(value.t)?; |
| 69 | + map_or_mask(values, mask, |v| v.to_string())? |
| 70 | + }; |
| 71 | + Ok(Column { name, data }) |
| 72 | +} |
| 73 | + |
| 74 | +pub fn output_float_column( |
| 75 | + name: String, |
| 76 | + value: TypedValue, |
| 77 | + fractional_bits: usize, |
| 78 | + float_decimal_places: usize, |
| 79 | + mask: &[u8], |
| 80 | +) -> Result<Column> { |
| 81 | + validate_shapes(&value, mask)?; |
| 82 | + let data = if value.t.get_scalar_type().is_signed() { |
| 83 | + let values = value.value.to_flattened_array_i64(value.t)?; |
| 84 | + map_or_mask(values, mask, |v| { |
| 85 | + format!( |
| 86 | + "{:.prec$}", |
| 87 | + v as f64 / (1 << fractional_bits) as f64, |
| 88 | + prec = float_decimal_places |
| 89 | + ) |
| 90 | + })? |
| 91 | + } else { |
| 92 | + let values = value.value.to_flattened_array_u64(value.t)?; |
| 93 | + map_or_mask(values, mask, |v| { |
| 94 | + format!( |
| 95 | + "{:.prec$}", |
| 96 | + v as f64 / (1 << fractional_bits) as f64, |
| 97 | + prec = float_decimal_places |
| 98 | + ) |
| 99 | + })? |
| 100 | + }; |
| 101 | + Ok(Column { name, data }) |
| 102 | +} |
| 103 | + |
| 104 | +pub fn output_bool_column(name: String, value: TypedValue, mask: &[u8]) -> Result<Column> { |
| 105 | + validate_shapes(&value, mask)?; |
| 106 | + let values = value.value.to_flattened_array_u8(value.t)?; |
| 107 | + let data = map_or_mask(values, mask, |v| { |
| 108 | + if v == 0 { |
| 109 | + "false".to_string() |
| 110 | + } else { |
| 111 | + "true".to_string() |
| 112 | + } |
| 113 | + })?; |
| 114 | + Ok(Column { name, data }) |
| 115 | +} |
| 116 | + |
| 117 | +fn validate_shapes(value: &TypedValue, mask: &[u8]) -> Result<()> { |
| 118 | + let n = match value.t.get_shape().as_slice() { |
| 119 | + &[n] => n as usize, |
| 120 | + _ => return Err(runtime_error!("value type {:?}", value.t)), |
| 121 | + }; |
| 122 | + if mask.len() != n { |
| 123 | + return Err(runtime_error!("mask.len() != n: {} vs {}", mask.len(), n)); |
| 124 | + } |
| 125 | + Ok(()) |
| 126 | +} |
| 127 | + |
| 128 | +pub fn output_table(columns: &Vec<Column>) -> Result<Vec<Vec<String>>> { |
| 129 | + if columns.is_empty() { |
| 130 | + return Err(runtime_error!("write_rows: empty columns list")); |
| 131 | + } |
| 132 | + let n = columns[0].data.len(); |
| 133 | + let mut table = vec![]; |
| 134 | + for i in 0..n { |
| 135 | + let row_iter = columns.iter().map(|column| &column.data[i]); |
| 136 | + if row_iter.clone().all(|cell| cell.is_none()) { |
| 137 | + // Skip empty rows. |
| 138 | + continue; |
| 139 | + } |
| 140 | + table.push( |
| 141 | + row_iter |
| 142 | + .map(|cell| match cell { |
| 143 | + None => "".to_owned(), |
| 144 | + Some(val) => val.clone(), |
| 145 | + }) |
| 146 | + .collect::<Vec<String>>(), |
| 147 | + ); |
| 148 | + } |
| 149 | + Ok(table) |
| 150 | +} |
| 151 | + |
| 152 | +pub fn write_table( |
| 153 | + mut columns: Vec<Column>, |
| 154 | + sort_columns: bool, |
| 155 | + sort_rows: bool, |
| 156 | +) -> Result<Vec<u8>> { |
| 157 | + if sort_columns { |
| 158 | + columns.sort_by(|c1, c2| c1.name.cmp(&c2.name)); |
| 159 | + } |
| 160 | + let mut table = output_table(&columns)?; |
| 161 | + if sort_rows { |
| 162 | + table.sort(); |
| 163 | + } |
| 164 | + let header = columns.into_iter().map(|column| column.name).collect(); |
| 165 | + write_to_csv(header, table) |
| 166 | +} |
| 167 | + |
| 168 | +fn write_to_csv(header: Vec<String>, table: Vec<Vec<String>>) -> Result<Vec<u8>> { |
| 169 | + let mut wtr = csv::Writer::from_writer(vec![]); |
| 170 | + wtr.write_record(header)?; |
| 171 | + for row in table { |
| 172 | + wtr.write_record(row)?; |
| 173 | + } |
| 174 | + wtr.into_inner() |
| 175 | + .map_err(|err| runtime_error!("Error: {}", err)) |
| 176 | +} |
| 177 | + |
| 178 | +pub fn unpack_named_tuple(value: TypedValue) -> Result<Vec<(String, TypedValue)>> { |
| 179 | + let name_and_types = match value.t.clone() { |
| 180 | + Type::NamedTuple(elements) => elements, |
| 181 | + t => return Err(runtime_error!("Expected NamedTuple, got {:?}", t)), |
| 182 | + }; |
| 183 | + let values = value.value.to_vector()?; |
| 184 | + if name_and_types.len() != values.len() { |
| 185 | + return Err(runtime_error!("Inconsistent data")); |
| 186 | + } |
| 187 | + let mut result = vec![]; |
| 188 | + for ((name, t), value) in name_and_types.into_iter().zip(values.into_iter()) { |
| 189 | + result.push(( |
| 190 | + name, |
| 191 | + TypedValue { |
| 192 | + value, |
| 193 | + t: t.as_ref().clone(), |
| 194 | + name: None, |
| 195 | + }, |
| 196 | + )); |
| 197 | + } |
| 198 | + Ok(result) |
| 199 | +} |
| 200 | + |
| 201 | +pub fn unpack_tuple(value: TypedValue) -> Result<Vec<TypedValue>> { |
| 202 | + let types = match value.t.clone() { |
| 203 | + Type::Tuple(elements) => elements, |
| 204 | + t => return Err(runtime_error!("Expected Tuple, got {:?}", t)), |
| 205 | + }; |
| 206 | + let values = value.value.to_vector()?; |
| 207 | + if types.len() != values.len() { |
| 208 | + return Err(runtime_error!("Inconsistent data")); |
| 209 | + } |
| 210 | + let mut result = vec![]; |
| 211 | + for (t, value) in types.into_iter().zip(values.into_iter()) { |
| 212 | + result.push(TypedValue { |
| 213 | + value, |
| 214 | + t: t.as_ref().clone(), |
| 215 | + name: None, |
| 216 | + }); |
| 217 | + } |
| 218 | + Ok(result) |
| 219 | +} |
| 220 | + |
| 221 | +pub fn unpack_pair(value: TypedValue) -> Result<(TypedValue, TypedValue)> { |
| 222 | + let values = unpack_tuple(value)?; |
| 223 | + match values.as_slice() { |
| 224 | + [first, second] => Ok((first.clone(), second.clone())), |
| 225 | + _ => Err(runtime_error!("Expected tuple of size 2")), |
| 226 | + } |
| 227 | +} |
| 228 | + |
| 229 | +pub fn extract_data_mask_pair(value: TypedValue) -> Result<(TypedValue, Vec<u8>)> { |
| 230 | + let (data, mask) = unpack_pair(value)?; |
| 231 | + let mask = mask.value.to_flattened_array_u8(mask.t)?; |
| 232 | + Ok((data, mask)) |
| 233 | +} |
| 234 | + |
| 235 | +#[cfg(test)] |
| 236 | +mod tests { |
| 237 | + use ndarray::array; |
| 238 | + |
| 239 | + use super::*; |
| 240 | + use crate::{ |
| 241 | + csv::test_utils::assert_table_eq, |
| 242 | + data_types::{BIT, INT64, UINT8}, |
| 243 | + typed_value_operations::TypedValueArrayOperations, |
| 244 | + }; |
| 245 | + |
| 246 | + #[test] |
| 247 | + fn test_output_csv() -> Result<()> { |
| 248 | + let c1 = output_int_column( |
| 249 | + "d".into(), |
| 250 | + TypedValue::from_ndarray(array![1, 2, 3, 4].into_dyn(), INT64)?, |
| 251 | + &[1, 1, 1, 0], |
| 252 | + )?; |
| 253 | + let c2 = output_float_column( |
| 254 | + "c".into(), |
| 255 | + TypedValue::from_ndarray(array![128, 256, 512, 1024].into_dyn(), INT64)?, |
| 256 | + 10, |
| 257 | + 3, |
| 258 | + &[0, 1, 1, 1], |
| 259 | + )?; |
| 260 | + let c3 = output_bool_column( |
| 261 | + "b".into(), |
| 262 | + TypedValue::from_ndarray(array![1, 0, 0, 1].into_dyn(), BIT)?, |
| 263 | + &[1, 0, 1, 1], |
| 264 | + )?; |
| 265 | + let c4 = output_string_column( |
| 266 | + "a".into(), |
| 267 | + TypedValue::from_ndarray( |
| 268 | + array![[65, 66, 0], [70, 0, 0], [75, 76, 77], [80, 81, 0]].into_dyn(), |
| 269 | + UINT8, |
| 270 | + )?, |
| 271 | + TypedValue::from_ndarray(array![2, 1, 3, 2].into_dyn(), INT64)?, |
| 272 | + &[1, 1, 1, 1], |
| 273 | + )?; |
| 274 | + assert_table_eq( |
| 275 | + write_table(vec![c1, c2, c3, c4], false, false)?, |
| 276 | + vec!["d", "c", "b", "a"], |
| 277 | + vec![ |
| 278 | + vec!["1", "", "true", "AB"], |
| 279 | + vec!["2", "0.250", "", "F"], |
| 280 | + vec!["3", "0.500", "false", "KLM"], |
| 281 | + vec!["", "1.000", "true", "PQ"], |
| 282 | + ], |
| 283 | + ) |
| 284 | + } |
| 285 | + |
| 286 | + #[tokio::test] |
| 287 | + async fn test_output_sorted_csv() -> Result<()> { |
| 288 | + let c1 = output_int_column( |
| 289 | + "salary".into(), |
| 290 | + TypedValue::from_ndarray(array![1000, 2000, 3000, 4000].into_dyn(), INT64)?, |
| 291 | + &[1, 1, 1, 1], |
| 292 | + )?; |
| 293 | + let c2 = output_int_column( |
| 294 | + "age".into(), |
| 295 | + TypedValue::from_ndarray(array![10, 20, 100, 30].into_dyn(), INT64)?, |
| 296 | + &[1, 1, 1, 0], |
| 297 | + )?; |
| 298 | + assert_table_eq( |
| 299 | + write_table(vec![c1, c2], true, true)?, |
| 300 | + vec!["age", "salary"], |
| 301 | + vec![ |
| 302 | + vec!["", "4000"], |
| 303 | + vec!["10", "1000"], |
| 304 | + vec!["100", "3000"], |
| 305 | + vec!["20", "2000"], |
| 306 | + ], |
| 307 | + ) |
| 308 | + } |
| 309 | +} |
0 commit comments