|
90 | 90 | " return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))\n", |
91 | 91 | "\n", |
92 | 92 | "# create the tfrecord dataset dir\n", |
93 | | - "os.mkdir(tfrecord_root)\n", |
| 93 | + "if not os.path.isdir(tfrecord_root):\n", |
| 94 | + " os.mkdir(tfrecord_root)\n", |
94 | 95 | "\n", |
95 | 96 | "for input_file, output_file in [(test_csv_file,test_tfrecord_file), (train_csv_file,train_tfrecord_file)]:\n", |
96 | 97 | " # create the output file\n", |
97 | 98 | " open(tfrecord_root + output_file, 'a').close()\n", |
98 | | - " with tf.python_io.TFRecordWriter(output_file) as writer:\n", |
| 99 | + " with tf.python_io.TFRecordWriter(tfrecord_root + output_file) as writer:\n", |
99 | 100 | " with open(csv_root + input_file,'r') as f:\n", |
100 | 101 | " f.readline() # skip first line\n", |
101 | 102 | " for line in f:\n", |
|
105 | 106 | " 'petal_length': _floatlist_feature(line.split(',')[2]),\n", |
106 | 107 | " 'petal_width': _floatlist_feature(line.split(',')[3]),\n", |
107 | 108 | " }\n", |
108 | | - " if file == train_csv_file:\n", |
| 109 | + " if f == train_csv_file:\n", |
109 | 110 | " feature['label'] = _int64list_feature(int(line.split(',')[4].rstrip()))\n", |
110 | 111 | " example = tf.train.Example(\n", |
111 | 112 | " features=tf.train.Features(\n", |
|
266 | 267 | "outputs": [], |
267 | 268 | "source": [ |
268 | 269 | "from sagemaker.tensorflow.serving import Model\n", |
| 270 | + "from sagemaker.utils import name_from_base\n", |
269 | 271 | "\n", |
270 | 272 | "client = boto3.client('sagemaker')\n", |
271 | 273 | "\n", |
272 | | - "model_name = 'tfrecord-to-tfserving'\n", |
| 274 | + "model_name = name_from_base('tfrecord-to-tfserving')\n", |
273 | 275 | "\n", |
274 | 276 | "transform_container = {\n", |
275 | 277 | " \"Image\": transformer_repository_uri\n", |
|
324 | 326 | " sagemaker_session=sess,\n", |
325 | 327 | ")\n", |
326 | 328 | "transformer.transform(data = input_data_path,\n", |
327 | | - " split_type = 'TFRecord')" |
| 329 | + " split_type = 'TFRecord')\n", |
| 330 | + "transformer.wait()" |
328 | 331 | ] |
329 | 332 | }, |
330 | 333 | { |
|
0 commit comments