Skip to content

ayasyrev/model_constructor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

model_constructor

Constructor to create pytorch model.

Install

pip install model-constructor

Or install from repo:

pip install git+https://github.com/ayasyrev/model_constructor.git

How to use

First import constructor class, then create model constructor object.

Now you can change every part of model.

from model_constructor import ModelConstructor
mc = ModelConstructor()

Check base parameters:

mc
output
ModelConstructor in_chans: 3, num_classes: 1000 expansion: 1, groups: 1, dw: False, div_groups: None act_fn: ReLU, sa: False, se: False stem sizes: [32, 32, 64], stride on 0 body sizes [64, 128, 256, 512] layers: [2, 2, 2, 2]

Check all parameters with print_cfg method:

mc.print_cfg()
output
ModelConstructor( in_chans=3 num_classes=1000 block='ResBlock' conv_layer='ConvBnAct' block_sizes=[64, 128, 256, 512] layers=[2, 2, 2, 2] norm='BatchNorm2d' act_fn='ReLU' pool="AvgPool2d {'kernel_size': 2, 'ceil_mode': True}" expansion=1 groups=1 bn_1st=True zero_bn=True stem_sizes=[32, 32, 64] stem_pool="MaxPool2d {'kernel_size': 3, 'stride': 2, 'padding': 1}" init_cnn='init_cnn' make_stem='make_stem' make_layer='make_layer' make_body='make_body' make_head='make_head') 

Now we have model constructor, default setting as xresnet18. And we can get model after call it.

model = mc() model
output
ModelConstructor( (stem): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (stem_pool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) ) (body): Sequential( (l_0): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) ) (l_1): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) ) (l_2): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) ) (l_3): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) ) ) (head): Sequential( (pool): AdaptiveAvgPool2d(output_size=1) (flat): Flatten(start_dim=1, end_dim=-1) (fc): Linear(in_features=512, out_features=1000, bias=True) ) )

If you want to change model, just change constructor parameters.
Lets create xresnet50.

mc.expansion = 4 mc.layers = [3,4,6,3]

Now we can look at model parts - stem, body, head.

mc.body
output
Sequential( (l_0): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (id_conv): ConvBnAct( (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_2): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) ) (l_1): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_2): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_3): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) ) (l_2): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_2): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_3): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_4): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_5): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) ) (l_3): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) (bl_2): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): ReLU(inplace=True) ) ) )

Create constructor from config.

Alternative we can create config first and than create constructor from it.

from model_constructor import ModelCfg
cfg = ModelCfg() print(cfg)
output
in_chans=3 num_classes=1000 block='ResBlock' conv_layer='ConvBnAct' block_sizes=[64, 128, 256, 512] layers=[2, 2, 2, 2] norm='BatchNorm2d' act_fn='ReLU' pool="AvgPool2d {'kernel_size': 2, 'ceil_mode': True}" expansion=1 groups=1 bn_1st=True zero_bn=True stem_sizes=[32, 32, 64] stem_pool="MaxPool2d {'kernel_size': 3, 'stride': 2, 'padding': 1}" init_cnn='init_cnn' make_stem='make_stem' make_layer='make_layer' make_body='make_body' make_head='make_head' 

Now we can create constructor from config:

mc = ModelConstructor.from_cfg(cfg) mc
output
ModelConstructor in_chans: 3, num_classes: 1000 expansion: 1, groups: 1, dw: False, div_groups: None act_fn: ReLU, sa: False, se: False stem sizes: [32, 32, 64], stride on 0 body sizes [64, 128, 256, 512] layers: [2, 2, 2, 2]

More modification.

Main purpose of this module - fast and easy modify model. And here is the link to more modification to beat Imagenette leaderboard with add MaxBlurPool and modification to ResBlock notebook

But now lets create model as mxresnet50 from fastai forums tread

Lets create mxresnet constructor.

mc = ModelConstructor(name='MxResNet')

Then lets modify stem.

mc.stem_sizes = [3,32,64,64]

Now lets change activation function to Mish. Here is link to forum discussion
We'v got Mish is in model_constructor.activations, but from pytorch 1.9 take it from torch:

# from model_constructor.activations import Mish from torch.nn import Mish
mc.act_fn = Mish
mc
output
MxResNet in_chans: 3, num_classes: 1000 expansion: 1, groups: 1, dw: False, div_groups: None act_fn: Mish, sa: False, se: False stem sizes: [3, 32, 64, 64], stride on 0 body sizes [64, 128, 256, 512] layers: [2, 2, 2, 2]

Here is model:

mc()
output
MxResNet( stem_sizes: [3, 32, 64, 64], act_fn: Mish (stem): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(3, 3, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_3): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (stem_pool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) ) (body): Sequential( (l_0): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) ) ) (l_1): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) ) ) (l_2): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) ) ) (l_3): Sequential( (bl_0): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (pool): AvgPool2d(kernel_size=2, stride=2, padding=0) (id_conv): ConvBnAct( (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) ) (bl_1): ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) ) ) ) (head): Sequential( (pool): AdaptiveAvgPool2d(output_size=1) (flat): Flatten(start_dim=1, end_dim=-1) (fc): Linear(in_features=512, out_features=1000, bias=True) ) )

MXResNet50

Now lets make MxResNet50

mc.expansion = 4 mc.layers = [3,4,6,3] mc.name = 'mxresnet50'

Now we have mxresnet50 constructor.
We can inspect every parts of it.
And after call it we got model.

mc
output
mxresnet50 in_chans: 3, num_classes: 1000 expansion: 4, groups: 1, dw: False, div_groups: None act_fn: Mish, sa: False, se: False stem sizes: [3, 32, 64, 64], stride on 0 body sizes [64, 128, 256, 512] layers: [3, 4, 6, 3]
mc.stem.conv_1
output
ConvBnAct( (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) )
mc.body.l_0.bl_0
output
ResBlock( (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): Mish(inplace=True) ) (conv_2): ConvBnAct( (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): Sequential( (id_conv): ConvBnAct( (conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (act_fn): Mish(inplace=True) )

We can get model direct way:

mc = ModelConstructor(name="MxResNet", act_fn=Mish, layers=[3,4,6,3], expansion=4, stem_sizes=[32,64,64]) model = mc()

Or create with config:

mc = ModelConstructor.from_cfg( ModelCfg(name="MxResNet", act_fn=Mish, layers=[3,4,6,3], expansion=4, stem_sizes=[32,64,64]) ) model = mc()

YaResNet

Now lets change Resblock to YaResBlock (Yet another ResNet, former NewResBlock) is in lib from version 0.1.0

from model_constructor.yaresnet import YaResBlock
mc = ModelConstructor(name="YaResNet") mc.block = YaResBlock

Or in one line:

mc = ModelConstructor(name="YaResNet", block=YaResBlock)

That all. Now we have YaResNet constructor

mc.print_cfg()
output
ModelConstructor( name='YaResNet' in_chans=3 num_classes=1000 block='YaResBlock' conv_layer='ConvBnAct' block_sizes=[64, 128, 256, 512] layers=[2, 2, 2, 2] norm='BatchNorm2d' act_fn='ReLU' pool="AvgPool2d {'kernel_size': 2, 'ceil_mode': True}" expansion=1 groups=1 bn_1st=True zero_bn=True stem_sizes=[32, 32, 64] stem_pool="MaxPool2d {'kernel_size': 3, 'stride': 2, 'padding': 1}" init_cnn='init_cnn' make_stem='make_stem' make_layer='make_layer' make_body='make_body' make_head='make_head') 

Let see what we have.

mc.body.l_1.bl_0
output
YaResBlock( (reduce): AvgPool2d(kernel_size=2, stride=2, padding=0) (convs): Sequential( (conv_0): ConvBnAct( (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act_fn): ReLU(inplace=True) ) (conv_1): ConvBnAct( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (id_conv): ConvBnAct( (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (merge): ReLU(inplace=True) )

Lets create Resnet34 like model constructor:

class YaResnet34(ModelConstructor): block: type[nn.Module] = YaResBlock layers: list[int] = [3, 4, 6, 3]
mc = YaResnet34() mc.print_cfg()
output
YaResnet34( in_chans=3 num_classes=1000 block='YaResBlock' conv_layer='ConvBnAct' block_sizes=[64, 128, 256, 512] layers=[3, 4, 6, 3] norm='BatchNorm2d' act_fn='ReLU' pool="AvgPool2d {'kernel_size': 2, 'ceil_mode': True}" expansion=1 groups=1 bn_1st=True zero_bn=True stem_sizes=[32, 32, 64] stem_pool="MaxPool2d {'kernel_size': 3, 'stride': 2, 'padding': 1}" init_cnn='init_cnn' make_stem='make_stem' make_layer='make_layer' make_body='make_body' make_head='make_head') 

And Resnet50 like model can be inherited from YaResnet34:

class YaResnet50(YaResnet34): expansion = 4
mc = YaResnet50() mc
output
YaResnet50 in_chans: 3, num_classes: 1000 expansion: 4, groups: 1, dw: False, div_groups: None act_fn: ReLU, sa: False, se: False stem sizes: [32, 32, 64], stride on 0 body sizes [64, 128, 256, 512] layers: [3, 4, 6, 3]

About

Constructor for pytorch models.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •