|
| 1 | +import os |
| 2 | +import tensorflow as tf |
| 3 | +from tensorflow.python.estimator.model_fn import ModeKeys as Modes |
| 4 | + |
| 5 | +INPUT_TENSOR_NAME = 'inputs' |
| 6 | +SIGNATURE_NAME = 'predictions' |
| 7 | + |
| 8 | +LEARNING_RATE = 0.001 |
| 9 | + |
| 10 | + |
| 11 | +def model_fn(features, labels, mode, params): |
| 12 | + # Input Layer |
| 13 | + input_layer = tf.reshape(features[INPUT_TENSOR_NAME], [-1, 28, 28, 1]) |
| 14 | + |
| 15 | + # Convolutional Layer #1 |
| 16 | + conv1 = tf.layers.conv2d( |
| 17 | + inputs=input_layer, |
| 18 | + filters=32, |
| 19 | + kernel_size=[5, 5], |
| 20 | + padding='same', |
| 21 | + activation=tf.nn.relu) |
| 22 | + |
| 23 | + # Pooling Layer #1 |
| 24 | + pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) |
| 25 | + |
| 26 | + # Convolutional Layer #2 and Pooling Layer #2 |
| 27 | + conv2 = tf.layers.conv2d( |
| 28 | + inputs=pool1, |
| 29 | + filters=64, |
| 30 | + kernel_size=[5, 5], |
| 31 | + padding='same', |
| 32 | + activation=tf.nn.relu) |
| 33 | + pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) |
| 34 | + |
| 35 | + # Dense Layer |
| 36 | + pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64]) |
| 37 | + dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) |
| 38 | + dropout = tf.layers.dropout( |
| 39 | + inputs=dense, rate=0.4, training=(mode == Modes.TRAIN)) |
| 40 | + |
| 41 | + # Logits Layer |
| 42 | + logits = tf.layers.dense(inputs=dropout, units=10) |
| 43 | + |
| 44 | + # Define operations |
| 45 | + if mode in (Modes.PREDICT, Modes.EVAL): |
| 46 | + predicted_indices = tf.argmax(input=logits, axis=1) |
| 47 | + probabilities = tf.nn.softmax(logits, name='softmax_tensor') |
| 48 | + |
| 49 | + if mode in (Modes.TRAIN, Modes.EVAL): |
| 50 | + global_step = tf.train.get_or_create_global_step() |
| 51 | + label_indices = tf.cast(labels, tf.int32) |
| 52 | + loss = tf.losses.softmax_cross_entropy( |
| 53 | + onehot_labels=tf.one_hot(label_indices, depth=10), logits=logits) |
| 54 | + tf.summary.scalar('OptimizeLoss', loss) |
| 55 | + |
| 56 | + if mode == Modes.PREDICT: |
| 57 | + predictions = { |
| 58 | + 'classes': predicted_indices, |
| 59 | + 'probabilities': probabilities |
| 60 | + } |
| 61 | + export_outputs = { |
| 62 | + SIGNATURE_NAME: tf.estimator.export.PredictOutput(predictions) |
| 63 | + } |
| 64 | + return tf.estimator.EstimatorSpec( |
| 65 | + mode, predictions=predictions, export_outputs=export_outputs) |
| 66 | + |
| 67 | + if mode == Modes.TRAIN: |
| 68 | + optimizer = tf.train.AdamOptimizer(learning_rate=0.001) |
| 69 | + train_op = optimizer.minimize(loss, global_step=global_step) |
| 70 | + return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) |
| 71 | + |
| 72 | + if mode == Modes.EVAL: |
| 73 | + eval_metric_ops = { |
| 74 | + 'accuracy': tf.metrics.accuracy(label_indices, predicted_indices) |
| 75 | + } |
| 76 | + return tf.estimator.EstimatorSpec( |
| 77 | + mode, loss=loss, eval_metric_ops=eval_metric_ops) |
| 78 | + |
| 79 | + |
| 80 | +def serving_input_fn(params): |
| 81 | + inputs = {INPUT_TENSOR_NAME: tf.placeholder(tf.float32, [None, 784])} |
| 82 | + return tf.estimator.export.ServingInputReceiver(inputs, inputs) |
| 83 | + |
| 84 | + |
| 85 | +def read_and_decode(filename_queue): |
| 86 | + reader = tf.TFRecordReader() |
| 87 | + _, serialized_example = reader.read(filename_queue) |
| 88 | + |
| 89 | + features = tf.parse_single_example( |
| 90 | + serialized_example, |
| 91 | + features={ |
| 92 | + 'image_raw': tf.FixedLenFeature([], tf.string), |
| 93 | + 'label': tf.FixedLenFeature([], tf.int64), |
| 94 | + }) |
| 95 | + |
| 96 | + image = tf.decode_raw(features['image_raw'], tf.uint8) |
| 97 | + image.set_shape([784]) |
| 98 | + image = tf.cast(image, tf.float32) * (1. / 255) |
| 99 | + label = tf.cast(features['label'], tf.int32) |
| 100 | + |
| 101 | + return image, label |
| 102 | + |
| 103 | + |
| 104 | +def train_input_fn(training_dir, params): |
| 105 | + return _input_fn(training_dir, 'train.tfrecords', batch_size=100) |
| 106 | + |
| 107 | + |
| 108 | +def eval_input_fn(training_dir, params): |
| 109 | + return _input_fn(training_dir, 'test.tfrecords', batch_size=100) |
| 110 | + |
| 111 | + |
| 112 | +def _input_fn(training_dir, training_filename, batch_size=100): |
| 113 | + test_file = os.path.join(training_dir, training_filename) |
| 114 | + filename_queue = tf.train.string_input_producer([test_file]) |
| 115 | + |
| 116 | + image, label = read_and_decode(filename_queue) |
| 117 | + images, labels = tf.train.batch( |
| 118 | + [image, label], batch_size=batch_size, |
| 119 | + capacity=1000 + 3 * batch_size) |
| 120 | + |
| 121 | + return {INPUT_TENSOR_NAME: images}, labels |
| 122 | + |
| 123 | +def neo_preprocess(payload, content_type): |
| 124 | + import logging |
| 125 | + import numpy as np |
| 126 | + import PIL.Image # Training container doesn't have this package |
| 127 | + import io |
| 128 | + |
| 129 | + logging.info('Invoking user-defined pre-processing function') |
| 130 | + |
| 131 | + if content_type != 'application/x-image': |
| 132 | + raise RuntimeError('Content type must be application/x-image') |
| 133 | + |
| 134 | + f = io.BytesIO(payload) |
| 135 | + # Load image and convert to greyscale space |
| 136 | + image = PIL.Image.open(f).convert('L') |
| 137 | + # Resize |
| 138 | + image = np.asarray(image.resize((28, 28))) |
| 139 | + # Reshape |
| 140 | + image = image.reshape((1,-1)).astype('float32') |
| 141 | + |
| 142 | + return image |
| 143 | + |
| 144 | +### NOTE: this function cannot use MXNet |
| 145 | +def neo_postprocess(result): |
| 146 | + import logging |
| 147 | + import numpy as np |
| 148 | + import json |
| 149 | + |
| 150 | + logging.info('Invoking user-defined post-processing function') |
| 151 | + |
| 152 | + # Softmax (assumes batch size 1) |
| 153 | + result = np.squeeze(result) |
| 154 | + result_exp = np.exp(result - np.max(result)) |
| 155 | + result = result_exp / np.sum(result_exp) |
| 156 | + |
| 157 | + response_body = json.dumps(result.tolist()) |
| 158 | + content_type = 'application/json' |
| 159 | + |
| 160 | + return response_body, content_type |
0 commit comments