You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+24-4Lines changed: 24 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -84,17 +84,15 @@ This projects handles the task with minimal user interaction by analyzing your d
84
84
>**Output:**<br />
85
85
>None<br />
86
86
87
-
**9) feature_transformation(train_data,test_data,continuous_features,discrete_features,transformation,dependent_feature):**<br /> The function performing the feature transormation technique as per the user input.<br />
87
+
**9) feature_transformation(train_data,continuous_features,discrete_features,transformation,dependent_feature):**<br /> The function performing the feature transormation technique as per the user input.<br />
88
88
>**Input:**<br />
89
89
>train_data=Training dataset<br />
90
-
>test_data=Test dataset<br />
91
90
>continuous_features= List of features names associated containing continuous numerical values<br />
92
91
>discrete_features=List of features names associated containing discrete numerical values<br />
>dependent_feature= Dependent feature name in string format<br />
95
94
>**Output:**<br />
96
95
>X_data=Training dataset<br />
97
-
>t_data=Test dataset<br />
98
96
99
97
**10) categorical_transformation(train_data,categorical_encoding):**<br /> This function transforms the categorical featres in the numerical ones using encoding techniques.<br />
100
98
>**Input:**<br />
@@ -103,7 +101,7 @@ This projects handles the task with minimal user interaction by analyzing your d
103
101
>**Output:**<br />
104
102
>X_data=Training dataset<br />
105
103
106
-
**11) feature_selection(Xtrain,ytrain, threshold, data_type, filter_type):**<br />This function performs the feature selection based on the dependent and independent features.<br />
104
+
**11a) feature_selection(Xtrain,ytrain, threshold, data_type, filter_type):**<br />This function performs the feature selection based on the dependent and independent features in train dataset.<br />
107
105
>**Input:**<br />
108
106
>Xtrain=Training dataset<br />
109
107
>ytrain=dependent data in training dataset<br />
@@ -117,10 +115,32 @@ This projects handles the task with minimal user interaction by analyzing your d
117
115
>**Output:**<br />
118
116
>Xtrain= Training dataset<br />
119
117
>feature_df= Dataframe containig features with their pvalue <br />
118
+
**11b) feature_selection(Xtrain,ytrain,Xtest,ytest, threshold, data_type, filter_type):**<br />This function performs the feature selection based on the dependent and independent features in train dataset.<br />
>data_type= Data linear or non-linearly dependent on the output label<br />
130
+
>filter_type= If input data is numerical and output is numerical then --'in_num_out_num' as shown in the above dictionary<br />
131
+
>**Output:**<br />
132
+
>Xtrain= Training dataset<br />
133
+
>Xtest= Test dataset<br />
134
+
>feature_df= Dataframe containig features with their pvalue <br />
135
+
120
136
121
137
**12) convert_dtype(data,categorical_features):**<br /> This function converts the categorical fetaures containing the numeric values but presented as categorical into the int format.<br />
122
138
>**Input:**<br />
123
139
>data= Dataset<br />
124
140
>categorical_features=List of features names associated containing categorical values<br />
125
141
>**Output:**<br />
126
142
>df=Dataset<br />
143
+
144
+
145
+
***Note***<br />
146
+
**Use same paramters for both train and test dataset for better accuracy**
0 commit comments