|
41 | 41 | - [Graph Machine Learning](#graph-machine-learning)
|
42 | 42 | - [Probabilistic Graphical Models](#probabilistic-graphical-models)
|
43 | 43 | - [Probabilistic Methods](#probabilistic-methods)
|
44 |
| -- [Data Manipulation](#data-manipulation) |
45 |
| -- [Data Frames](#data-frames) |
46 |
| -- [Pipelines](#pipelines) |
47 |
| -- [Data-centric AI](#data-centric-ai) |
48 |
| -- [Synthetic Data](#synthetic-data) |
| 44 | +- [Model Explanation](#model-explanation) |
| 45 | +- [Optimization](#optimization) |
| 46 | +- [Genetic Programming](#genetic-programming) |
49 | 47 | - [Feature Engineering](#feature-engineering)
|
50 | 48 | - [General](#general)
|
51 | 49 | - [Feature Selection](#feature-selection)
|
|
55 | 53 | - [Map](#map)
|
56 | 54 | - [Automatic Plotting](#automatic-plotting)
|
57 | 55 | - [NLP](#nlp)
|
| 56 | +- [Data Manipulation](#data-manipulation) |
| 57 | +- [Data Frames](#data-frames) |
| 58 | +- [Pipelines](#pipelines) |
| 59 | +- [Data-centric AI](#data-centric-ai) |
| 60 | +- [Synthetic Data](#synthetic-data) |
58 | 61 | - [Deployment](#deployment)
|
59 |
| -- [Model Explanation](#model-explanation) |
60 |
| -- [Genetic Programming](#genetic-programming) |
61 |
| -- [Optimization](#optimization) |
62 | 62 | - [Statistics](#statistics)
|
63 | 63 | - [Distributed Computing](#distributed-computing)
|
64 | 64 | - [Experimentation](#experimentation)
|
|
280 | 280 | * [GPyTorch](https://github.com/cornellius-gp/gpytorch) - A highly efficient and modular implementation of Gaussian Processes in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
281 | 281 | * [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite) - A scikit-learn-inspired API for CRFsuite. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
282 | 282 |
|
283 |
| -## Feature Engineering |
284 |
| - |
285 |
| -### General |
286 |
| -* [Featuretools](https://github.com/Featuretools/featuretools) - Automated feature engineering. |
287 |
| -* [Feature Engine](https://github.com/feature-engine/feature_engine) - Feature engineering package with sklearn-like functionality. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
288 |
| -* [OpenFE](https://github.com/IIIS-Li-Group/OpenFE) - Automated feature generation with expert-level performance. |
289 |
| -* [skl-groups](https://github.com/dougalsutherland/skl-groups) - A scikit-learn addon to operate on set/"group"-based features. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
290 |
| -* [Feature Forge](https://github.com/machinalis/featureforge) - A set of tools for creating and testing machine learning features. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
291 |
| -* [few](https://github.com/lacava/few) - A feature engineering wrapper for sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
292 |
| -* [scikit-mdr](https://github.com/EpistasisLab/scikit-mdr) - A sklearn-compatible Python implementation of Multifactor Dimensionality Reduction (MDR) for feature construction. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
293 |
| -* [tsfresh](https://github.com/blue-yonder/tsfresh) - Automatic extraction of relevant features from time series. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
294 |
| -* [dirty_cat](https://github.com/dirty-cat/dirty_cat) - Machine learning on dirty tabular data (especially: string-based variables for classifcation and regression). <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
295 |
| -* [NitroFE](https://github.com/NITRO-AI/NitroFE) - Moving window features. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
296 |
| -* [sk-transformer](https://github.com/chrislemke/sk-transformers) - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps <img height="20" src="img/pandas_big.png" alt="pandas compatible"> |
297 |
| - |
298 |
| - |
299 |
| -### Feature Selection |
300 |
| -* [scikit-feature](https://github.com/jundongl/scikit-feature) - Feature selection repository in Python. |
301 |
| -* [boruta_py](https://github.com/scikit-learn-contrib/boruta_py) - Implementations of the Boruta all-relevant feature selection method. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
302 |
| -* [BoostARoota](https://github.com/chasedehan/BoostARoota) - A fast xgboost feature selection algorithm. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
303 |
| -* [scikit-rebate](https://github.com/EpistasisLab/scikit-rebate) - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
304 |
| -* [zoofs](https://github.com/jaswinder9051998/zoofs) - A feature selection library based on evolutionary algorithms. |
305 |
| - |
306 |
| -## Visualization |
307 |
| -### General Purposes |
308 |
| -* [Matplotlib](https://github.com/matplotlib/matplotlib) - Plotting with Python. |
309 |
| -* [seaborn](https://github.com/mwaskom/seaborn) - Statistical data visualization using matplotlib. |
310 |
| -* [prettyplotlib](https://github.com/olgabot/prettyplotlib) - Painlessly create beautiful matplotlib plots. |
311 |
| -* [python-ternary](https://github.com/marcharper/python-ternary) - Ternary plotting library for Python with matplotlib. |
312 |
| -* [missingno](https://github.com/ResidentMario/missingno) - Missing data visualization module for Python. |
313 |
| -* [chartify](https://github.com/spotify/chartify/) - Python library that makes it easy for data scientists to create charts. |
314 |
| -* [physt](https://github.com/janpipek/physt) - Improved histograms. |
315 |
| -### Interactive plots |
316 |
| -* [animatplot](https://github.com/t-makaro/animatplot) - A python package for animating plots built on matplotlib. |
317 |
| -* [plotly](https://plot.ly/python/) - A Python library that makes interactive and publication-quality graphs. |
318 |
| -* [Bokeh](https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python. |
319 |
| -* [Altair](https://altair-viz.github.io/) - Declarative statistical visualization library for Python. Can easily do many data transformation within the code to create graph |
320 |
| -* [bqplot](https://github.com/bqplot/bqplot) - Plotting library for IPython/Jupyter notebooks |
321 |
| -* [pyecharts](https://github.com/pyecharts/pyecharts) - Migrated from [Echarts](https://github.com/apache/echarts), a charting and visualization library, to Python's interactive visual drawing library.<img height="20" src="img/pyecharts.png" alt="pyecharts"> <img height="20" src="img/echarts.png" alt="echarts"> |
322 |
| -### Map |
323 |
| -* [folium](https://python-visualization.github.io/folium/quickstart.html#Getting-Started) - Makes it easy to visualize data on an interactive open street map |
324 |
| -* [geemap](https://github.com/giswqs/geemap) - Python package for interactive mapping with Google Earth Engine (GEE) |
325 |
| -### Automatic Plotting |
326 |
| -* [HoloViews](https://github.com/ioam/holoviews) - Stop plotting your data - annotate your data and let it visualize itself. |
327 |
| -* [AutoViz](https://github.com/AutoViML/AutoViz): Visualize data automatically with 1 line of code (ideal for machine learning) |
328 |
| -* [SweetViz](https://github.com/fbdesignpro/sweetviz): Visualize and compare datasets, target values and associations, with one line of code. |
329 |
| - |
330 |
| -### NLP |
331 |
| -* [pyLDAvis](https://github.com/bmabey/pyLDAvis): Visualize interactive topic model |
332 |
| - |
333 |
| - |
334 |
| -## Deployment |
335 |
| -* [fastapi](https://fastapi.tiangolo.com/) - Modern, fast (high-performance), a web framework for building APIs with Python |
336 |
| -* [streamlit](https://www.streamlit.io/) - Make it easy to deploy the machine learning model |
337 |
| -* [gradio](https://github.com/gradio-app/gradio) - Create UIs for your machine learning model in Python in 3 minutes. |
338 |
| -* [datapane](https://datapane.com/) - A collection of APIs to turn scripts and notebooks into interactive reports. |
339 |
| -* [binder](https://mybinder.org/) - Enable sharing and execute Jupyter Notebooks |
340 |
| - |
341 | 283 | ## Model Explanation
|
342 | 284 |
|
343 | 285 | * [dalex](https://github.com/ModelOriented/DALEX) - moDel Agnostic Language for Exploration and explanation. <img height="20" src="img/sklearn_big.png" alt="sklearn"><img height="20" src="img/R_big.png" alt="R inspired/ported lib">
|
|
368 | 310 | * [tensorboard-pytorch](https://github.com/lanpa/tensorboard-pytorch) - Tensorboard for PyTorch (and chainer, mxnet, numpy, ...).
|
369 | 311 | * [mxboard](https://github.com/awslabs/mxboard) - Logging MXNet data for visualization in TensorBoard. <img height="20" src="img/mxnet_big.png" alt="MXNet based">
|
370 | 312 |
|
371 |
| - |
372 |
| - |
373 | 313 | ## Genetic Programming
|
374 | 314 | * [gplearn](https://github.com/trevorstephens/gplearn) - Genetic Programming in Python. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
375 | 315 | * [DEAP](https://github.com/DEAP/deap) - Distributed Evolutionary Algorithms in Python.
|
|
402 | 342 | * [nlopt](https://github.com/stevengj/nlopt) - Library for nonlinear optimization (global and local, constrained or unconstrained).
|
403 | 343 | * [OR-Tools](https://developers.google.com/optimization) - An open-source software suite for optimization by Google; provides a unified programming interface to a half dozen solvers: SCIP, GLPK, GLOP, CP-SAT, CPLEX, and Gurobi.
|
404 | 344 |
|
| 345 | +## Feature Engineering |
| 346 | + |
| 347 | +### General |
| 348 | +* [Featuretools](https://github.com/Featuretools/featuretools) - Automated feature engineering. |
| 349 | +* [Feature Engine](https://github.com/feature-engine/feature_engine) - Feature engineering package with sklearn-like functionality. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 350 | +* [OpenFE](https://github.com/IIIS-Li-Group/OpenFE) - Automated feature generation with expert-level performance. |
| 351 | +* [skl-groups](https://github.com/dougalsutherland/skl-groups) - A scikit-learn addon to operate on set/"group"-based features. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 352 | +* [Feature Forge](https://github.com/machinalis/featureforge) - A set of tools for creating and testing machine learning features. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 353 | +* [few](https://github.com/lacava/few) - A feature engineering wrapper for sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 354 | +* [scikit-mdr](https://github.com/EpistasisLab/scikit-mdr) - A sklearn-compatible Python implementation of Multifactor Dimensionality Reduction (MDR) for feature construction. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 355 | +* [tsfresh](https://github.com/blue-yonder/tsfresh) - Automatic extraction of relevant features from time series. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 356 | +* [dirty_cat](https://github.com/dirty-cat/dirty_cat) - Machine learning on dirty tabular data (especially: string-based variables for classifcation and regression). <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 357 | +* [NitroFE](https://github.com/NITRO-AI/NitroFE) - Moving window features. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 358 | +* [sk-transformer](https://github.com/chrislemke/sk-transformers) - A collection of various pandas & scikit-learn compatible transformers for all kinds of preprocessing and feature engineering steps <img height="20" src="img/pandas_big.png" alt="pandas compatible"> |
| 359 | + |
| 360 | + |
| 361 | +### Feature Selection |
| 362 | +* [scikit-feature](https://github.com/jundongl/scikit-feature) - Feature selection repository in Python. |
| 363 | +* [boruta_py](https://github.com/scikit-learn-contrib/boruta_py) - Implementations of the Boruta all-relevant feature selection method. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 364 | +* [BoostARoota](https://github.com/chasedehan/BoostARoota) - A fast xgboost feature selection algorithm. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 365 | +* [scikit-rebate](https://github.com/EpistasisLab/scikit-rebate) - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 366 | +* [zoofs](https://github.com/jaswinder9051998/zoofs) - A feature selection library based on evolutionary algorithms. |
| 367 | + |
| 368 | +## Visualization |
| 369 | +### General Purposes |
| 370 | +* [Matplotlib](https://github.com/matplotlib/matplotlib) - Plotting with Python. |
| 371 | +* [seaborn](https://github.com/mwaskom/seaborn) - Statistical data visualization using matplotlib. |
| 372 | +* [prettyplotlib](https://github.com/olgabot/prettyplotlib) - Painlessly create beautiful matplotlib plots. |
| 373 | +* [python-ternary](https://github.com/marcharper/python-ternary) - Ternary plotting library for Python with matplotlib. |
| 374 | +* [missingno](https://github.com/ResidentMario/missingno) - Missing data visualization module for Python. |
| 375 | +* [chartify](https://github.com/spotify/chartify/) - Python library that makes it easy for data scientists to create charts. |
| 376 | +* [physt](https://github.com/janpipek/physt) - Improved histograms. |
| 377 | +### Interactive plots |
| 378 | +* [animatplot](https://github.com/t-makaro/animatplot) - A python package for animating plots built on matplotlib. |
| 379 | +* [plotly](https://plot.ly/python/) - A Python library that makes interactive and publication-quality graphs. |
| 380 | +* [Bokeh](https://github.com/bokeh/bokeh) - Interactive Web Plotting for Python. |
| 381 | +* [Altair](https://altair-viz.github.io/) - Declarative statistical visualization library for Python. Can easily do many data transformation within the code to create graph |
| 382 | +* [bqplot](https://github.com/bqplot/bqplot) - Plotting library for IPython/Jupyter notebooks |
| 383 | +* [pyecharts](https://github.com/pyecharts/pyecharts) - Migrated from [Echarts](https://github.com/apache/echarts), a charting and visualization library, to Python's interactive visual drawing library.<img height="20" src="img/pyecharts.png" alt="pyecharts"> <img height="20" src="img/echarts.png" alt="echarts"> |
| 384 | +### Map |
| 385 | +* [folium](https://python-visualization.github.io/folium/quickstart.html#Getting-Started) - Makes it easy to visualize data on an interactive open street map |
| 386 | +* [geemap](https://github.com/giswqs/geemap) - Python package for interactive mapping with Google Earth Engine (GEE) |
| 387 | +### Automatic Plotting |
| 388 | +* [HoloViews](https://github.com/ioam/holoviews) - Stop plotting your data - annotate your data and let it visualize itself. |
| 389 | +* [AutoViz](https://github.com/AutoViML/AutoViz): Visualize data automatically with 1 line of code (ideal for machine learning) |
| 390 | +* [SweetViz](https://github.com/fbdesignpro/sweetviz): Visualize and compare datasets, target values and associations, with one line of code. |
| 391 | + |
| 392 | +### NLP |
| 393 | +* [pyLDAvis](https://github.com/bmabey/pyLDAvis): Visualize interactive topic model |
| 394 | + |
| 395 | + |
| 396 | +## Deployment |
| 397 | +* [fastapi](https://fastapi.tiangolo.com/) - Modern, fast (high-performance), a web framework for building APIs with Python |
| 398 | +* [streamlit](https://www.streamlit.io/) - Make it easy to deploy the machine learning model |
| 399 | +* [gradio](https://github.com/gradio-app/gradio) - Create UIs for your machine learning model in Python in 3 minutes. |
| 400 | +* [datapane](https://datapane.com/) - A collection of APIs to turn scripts and notebooks into interactive reports. |
| 401 | +* [binder](https://mybinder.org/) - Enable sharing and execute Jupyter Notebooks |
| 402 | + |
| 403 | + |
| 404 | + |
405 | 405 | ## Statistics
|
406 | 406 | * [pandas_summary](https://github.com/mouradmourafiq/pandas-summary) - Extension to pandas dataframes describe function. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
407 | 407 | * [Pandas Profiling](https://github.com/pandas-profiling/pandas-profiling) - Create HTML profiling reports from pandas DataFrame objects. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
|
0 commit comments