@@ -174,7 +174,7 @@ Attributes - 27
174174| Resnet50 | drive | drive | ma: 0.6868,Acc: 0.5437 | 50 | trainset -12150, test set: 1350
175175| Densenet121 | drive | drive | ma: 0.6647, Acc: 0.5271 | 50 | trainset -12150, test set: 1350
176176| Alexnet | drive | drive | ma: 0.6451, Acc: 0.5035 | 50 | trainset -12150, test set: 1350
177- | mnasnet | drive | drive | - | 50 | trainset -12150, test set: 1350
177+ | mnasnet | drive | drive | ma: 0.50, Acc:0.2980 | 50 | trainset -12150, test set: 1350
178178| shufflenetv2 | drive | drive | ma: 0.6533,Acc: 0.5086 | 50 | trainset -12150, test set: 1350
179179| squeezenet | drive | drive | ma: 0.5943,Acc: 0.4573 | 50 | trainset -12150, test set: 1350
180180| vgg | drive | drive | ma: 0.5928,Acc: 0.4677 | 50 | trainset -12150, test set: 1350
@@ -300,17 +300,43 @@ footwear accuracy - 0.6748148148148149
300300emotion accuracy - 0.7518518518518519
301301bodypose accuracy - 0.7333333333333333
302302
303+ MNASnet :
304+
305+ TSAI accuracy metric
306+ shape gt label (1350, 27)
307+ pred prob shape (1350, 27)
308+ gender accuracy - 0.43555555555555553
309+ Image quality accuracy - 0.5481481481481482
310+ age accuracy - 0.4192592592592593
311+ weight accuracy - 0.6525925925925926
312+ carryingbag accuracy - 0.32222222222222224
313+ footwear accuracy - 0.43037037037037035
314+ emotion accuracy - 0.7622222222222222
315+ bodypose accuracy - 0.20296296296296296
316+
317+
318+ papers to read before writing :
319+
320+ For ajith :
321+ An Attention-Based Deep Learning Model for Multiple Pedestrian
322+ Rethinking of Pedestrain Attribute Recognition
323+
324+ For hammad:
325+ skiming - Clothes key point localization and attribute recognition via prior knowledge
326+ Hierarchial Feature Embedding for Attribute recogntion
327+ Texture and shape biased two-steam networks for clothing classification and attribute recognition
328+ Rethinking of Pedestrain Attribute Recognition
303329
304330
305331Draft paper topics :
306332
307333Abstract - Ajith
308- 1.Introduction - Hammad
309- 2.Related Work - Hammad
310- 3.Proposed method - Hammad
334+ 1 . Introduction - Hammad
335+ 2 . Related Work - Hammad
336+ 3 . Proposed method - Hammad
311337 3.1 -
312338 3.2 - loss
313- 4.Experiments - Ajith
339+ 4 . Experiments - Ajith
314340 4.1 Datasets
315341 4.2 Evaluations
316342 4.3 Implementation Details
0 commit comments