|
| 1 | +#%%writefile test.py |
| 2 | + |
| 3 | +import os |
| 4 | +import pprint |
| 5 | +from collections import OrderedDict, defaultdict |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import torch |
| 9 | +from torch.optim.lr_scheduler import ReduceLROnPlateau |
| 10 | +from torch.utils.data import DataLoader |
| 11 | + |
| 12 | +from batch_engine import valid_trainer, batch_trainer |
| 13 | +from config import argument_parser |
| 14 | +from dataset.AttrDataset import AttrDataset, get_transform |
| 15 | +from loss.CE_loss import CEL_Sigmoid |
| 16 | +from models.base_block import FeatClassifier, BaseClassifier |
| 17 | +from models.vgg import vgg16 |
| 18 | +from tools.function import get_model_log_path, get_pedestrian_metrics |
| 19 | +from tools.utils import time_str, save_ckpt, ReDirectSTD, set_seed |
| 20 | + |
| 21 | +set_seed(605) |
| 22 | + |
| 23 | + |
| 24 | +def main(args): |
| 25 | + visenv_name = args.dataset |
| 26 | + exp_dir = os.path.join('exp_result', args.dataset) |
| 27 | + model_dir, log_dir = get_model_log_path(exp_dir, visenv_name) |
| 28 | + stdout_file = os.path.join(log_dir, f'stdout_{time_str()}.txt') |
| 29 | + |
| 30 | + checkpoint_file = args.checkpoint |
| 31 | + |
| 32 | + if args.redirector: |
| 33 | + print('redirector stdout') |
| 34 | + ReDirectSTD(stdout_file, 'stdout', False) |
| 35 | + |
| 36 | + pprint.pprint(OrderedDict(args.__dict__)) |
| 37 | + |
| 38 | + print('-' * 60) |
| 39 | + print(f'use GPU{args.device} for testing') |
| 40 | + #print(f'train set: {args.dataset} {args.train_split}, test set: {args.valid_split}') |
| 41 | + |
| 42 | + train_tsfm, valid_tsfm = get_transform(args) |
| 43 | + #print(train_tsfm) |
| 44 | + |
| 45 | + train_set = AttrDataset(args=args, split=args.train_split, transform=train_tsfm) |
| 46 | + |
| 47 | + train_loader = DataLoader( |
| 48 | + dataset=train_set, |
| 49 | + batch_size=args.batchsize, |
| 50 | + shuffle=True, |
| 51 | + num_workers=4, |
| 52 | + pin_memory=True, |
| 53 | + ) |
| 54 | + valid_set = AttrDataset(args=args, split=args.valid_split, transform=valid_tsfm) |
| 55 | + |
| 56 | + valid_loader = DataLoader( |
| 57 | + dataset=valid_set, |
| 58 | + batch_size=args.batchsize, |
| 59 | + shuffle=False, |
| 60 | + num_workers=4, |
| 61 | + pin_memory=True, |
| 62 | + ) |
| 63 | + |
| 64 | + print(f'{args.train_split} set: {len(train_loader.dataset)}, ' |
| 65 | + f'{args.valid_split} set: {len(valid_loader.dataset)}, ' |
| 66 | + f'attr_num : {train_set.attr_num}') |
| 67 | + |
| 68 | + labels = train_set.label |
| 69 | + sample_weight = labels.mean(0) |
| 70 | + |
| 71 | + backbone = vgg16() |
| 72 | + classifier = BaseClassifier(nattr=train_set.attr_num) |
| 73 | + model = FeatClassifier(backbone, classifier) |
| 74 | + |
| 75 | + #model.load_state_dict(torch.load(filename)) |
| 76 | + if torch.cuda.is_available(): |
| 77 | + model = torch.nn.DataParallel(model).cuda() |
| 78 | + |
| 79 | + #print(checkpoint_file['state_dicts']) |
| 80 | + checkpoint = torch.load(checkpoint_file) |
| 81 | + model.load_state_dict(checkpoint["state_dicts"]) |
| 82 | + |
| 83 | + criterion = CEL_Sigmoid(sample_weight) |
| 84 | + |
| 85 | + param_groups = [{'params': model.module.finetune_params(), 'lr': args.lr_ft}, |
| 86 | + {'params': model.module.fresh_params(), 'lr': args.lr_new}] |
| 87 | + optimizer = torch.optim.SGD(param_groups, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=False) |
| 88 | + lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.1, patience=4) |
| 89 | + |
| 90 | + |
| 91 | + |
| 92 | + tester(epoch=args.train_epoch, |
| 93 | + model=model, |
| 94 | + train_loader=train_loader, |
| 95 | + valid_loader=valid_loader, |
| 96 | + criterion=criterion, |
| 97 | + optimizer=optimizer, |
| 98 | + lr_scheduler=lr_scheduler, |
| 99 | + ) |
| 100 | + |
| 101 | + |
| 102 | + |
| 103 | + |
| 104 | +def tester(epoch, model, train_loader, valid_loader, criterion, optimizer, lr_scheduler): |
| 105 | + maximum = float(-np.inf) |
| 106 | + best_epoch = 0 |
| 107 | + |
| 108 | + result_list = defaultdict() |
| 109 | + |
| 110 | + |
| 111 | + |
| 112 | + valid_loss, valid_gt, valid_probs = valid_trainer( |
| 113 | + model=model, |
| 114 | + valid_loader=valid_loader, |
| 115 | + criterion=criterion, |
| 116 | + ) |
| 117 | + |
| 118 | + lr_scheduler.step(metrics=valid_loss, epoch=1) |
| 119 | + |
| 120 | + |
| 121 | + valid_result = get_pedestrian_metrics(valid_gt, valid_probs) |
| 122 | + |
| 123 | + print(f'Evaluation on test set, \n', |
| 124 | + 'ma: {:.4f}, pos_recall: {:.4f} , neg_recall: {:.4f} \n'.format( |
| 125 | + valid_result.ma, np.mean(valid_result.label_pos_recall), np.mean(valid_result.label_neg_recall)), |
| 126 | + 'Acc: {:.4f}, Prec: {:.4f}, Rec: {:.4f}, F1: {:.4f}'.format( |
| 127 | + valid_result.instance_acc, valid_result.instance_prec, valid_result.instance_recall, |
| 128 | + valid_result.instance_f1)) |
| 129 | + |
| 130 | + print(f'{time_str()}') |
| 131 | + print('-' * 60) |
| 132 | + |
| 133 | + |
| 134 | + |
| 135 | + |
| 136 | +if __name__ == '__main__': |
| 137 | + parser = argument_parser() |
| 138 | + |
| 139 | + args = parser.parse_args() |
| 140 | + print(args) |
| 141 | + main(args) |
| 142 | + |
| 143 | + # os.path.abspath() |
| 144 | + |
| 145 | +""" |
| 146 | +载入的时候要: |
| 147 | +from tools.function import LogVisual |
| 148 | +sys.modules['LogVisual'] = LogVisual |
| 149 | +log = torch.load('./save/2018-10-29_21:17:34trlog') |
| 150 | +""" |
0 commit comments