|
10 | 10 | [amd]: https://raw.githubusercontent.com/krzjoa/awesome-python-datascience/master/img/amd.png "AMD based" |
11 | 11 | [pd]: https://raw.githubusercontent.com/krzjoa/awesome-python-datascience/master/img/pandas.png "pandas based" |
12 | 12 |
|
13 | | -* [alexander](https://github.com/annoys-parrot/alexander) ![alt text][skl] ![alt text][pd] - wrapper that aims to make scikit-learn fully compatible with pandas |
| 13 | + |
| 14 | +### General ML |
| 15 | +* [civisml-extensions](https://github.com/civisanalytics/civisml-extensions) ![alt text][skl] - scikit-learn-compatible estimators from Civis Analytics |
| 16 | +* [fklearn](https://github.com/nubank/fklearn) ![alt text][skl] - Functional Machine Learning |
| 17 | +* [sklearn-extensions](https://github.com/wdm0006/sklearn-extensions) ![alt text][skl] - a consolidated package of small extensions to scikit-learn |
| 18 | +* [bace](https://github.com/krzjoa/bace) ![alt text][skl] - A deck of Naive Bayes algorithms with sklearn-like API |
14 | 19 | * [HungaBunga](https://github.com/ypeleg/HungaBunga) - Brute-Force all sklearn models with all parameters using .fit .predict! |
| 20 | +* [Random Forest Clustering](https://github.com/joshloyal/RandomForestClustering) - Unsupervised Clustering using Random Forests.<img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 21 | + |
| 22 | +#### Gradient Boosting Machines |
| 23 | +* [InfiniteBoost](https://github.com/arogozhnikov/infiniteboost) - building infinite ensembles with gradient descent |
| 24 | +* [TGBoost](https://github.com/wepe/tgboost) ![alt text][skl] - Tiny Gradient Boosting Tree |
| 25 | + |
| 26 | + |
| 27 | +### Deap Learning |
15 | 28 | * [Conx](https://github.com/Calysto/conx) - The On-Ramp to Deep Learning |
16 | 29 | * [quinn](https://github.com/MrPowers/quinn) - pyspark methods to enhance developer productivity. ![alt text][sp] |
17 | 30 | * [scikit-chainer](https://github.com/lucidfrontier45/scikit-chainer) - Scikit-learn like interface to chainer. ![alt text][skl] |
18 | 31 | * [chainer_sklearn](https://github.com/corochann/chainer_sklearn) - Sklearn (Scikit-learn) like interface for Chainer. ![alt text][skl] |
| 32 | + |
| 33 | +### Data Manipulation |
| 34 | +* [alexander](https://github.com/annoys-parrot/alexander) ![alt text][skl] ![alt text][pd] - wrapper that aims to make scikit-learn fully compatible with pandas |
19 | 35 | * [Fuel](https://github.com/mila-udem/fuel) - Data pipeline framework for machine learning. |
| 36 | + |
| 37 | +### Evaluation |
20 | 38 | * [kaggle-metrics](https://github.com/krzjoa/kaggle-metrics) - Metrics for Kaggle competitions. |
| 39 | + |
| 40 | +### Statistics |
21 | 41 | * [simplestatistics](https://github.com/sheriferson/simplestatistics) - Simple statistical functions implemented in readable Python. |
22 | 42 | * [pysie](https://github.com/chen0040/pysie) - Provides python implementation of statistical inference engine. |
23 | | -* [Random Forest Clustering](https://github.com/joshloyal/RandomForestClustering) - Unsupervised Clustering using Random Forests.<img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 43 | + |
0 commit comments