|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Deploy App to Snowflake" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "from snowflake.snowpark import Session\n", |
| 17 | + "from string import Template\n", |
| 18 | + "import json" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "metadata": {}, |
| 24 | + "source": [ |
| 25 | + "### Connect to Snowflake" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "markdown", |
| 30 | + "metadata": {}, |
| 31 | + "source": [ |
| 32 | + "You can create a session however you like. Here are two possible options. " |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "markdown", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "OPTION 1 - Using builder.getOrCreate() to access an existing toml file\n", |
| 40 | + "- https://docs.snowflake.com/en/developer-guide/python-connector/python-connector-connect#connecting-using-the-connections-toml-file" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 2, |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "session = Session.builder.getOrCreate()" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "metadata": {}, |
| 55 | + "source": [ |
| 56 | + "OPTION 2 - Using connection params inside builder.configs().create() " |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": 3, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "# connection_params = dict(\n", |
| 66 | + "# user=\"\",\n", |
| 67 | + "# role=\"\",\n", |
| 68 | + "# password=\"\",\n", |
| 69 | + "# account=\"\",\n", |
| 70 | + "# )\n", |
| 71 | + "\n", |
| 72 | + "# session = Session.builder.configs(connection_params).create()" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "markdown", |
| 77 | + "metadata": {}, |
| 78 | + "source": [ |
| 79 | + "### Establish metadata\n", |
| 80 | + "\n", |
| 81 | + "NOTE: In the metadata dict below, you can change any of the key:value pairs EXCEPT main_file=\"automl_app.py\"." |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 4, |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [], |
| 89 | + "source": [ |
| 90 | + "metadata = dict(\n", |
| 91 | + " database_name=\"ML_SIDEKICK\",\n", |
| 92 | + " schema_name=\"ST_APPS\",\n", |
| 93 | + " stage_name=\"APP_STG\",\n", |
| 94 | + " app_name=\"ML_SIDEKICK\",\n", |
| 95 | + " main_file=\"automl_app.py\", # DO NOT CHANGE\n", |
| 96 | + " query_warehouse=\"COMPUTE_WH\", # CHANGE TO AN EXISTING WAREHOUSE\n", |
| 97 | + ")\n", |
| 98 | + "with open(\"deployment_structure.json\", \"r\") as config:\n", |
| 99 | + " upload_metadata = json.loads(config.read())" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "markdown", |
| 104 | + "metadata": {}, |
| 105 | + "source": [ |
| 106 | + "### Templates" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": 12, |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [], |
| 114 | + "source": [ |
| 115 | + "create_db = Template(\"CREATE DATABASE IF NOT EXISTS $db\")\n", |
| 116 | + "create_schema = Template(\"CREATE SCHEMA IF NOT EXISTS $db.$schema\")\n", |
| 117 | + "create_stage = Template(\n", |
| 118 | + " \"\"\"\n", |
| 119 | + "CREATE STAGE IF NOT EXISTS $db.$schema.$stage\n", |
| 120 | + "DIRECTORY=(ENABLE=TRUE);\n", |
| 121 | + "\"\"\"\n", |
| 122 | + ")\n", |
| 123 | + "create_streamlit = Template(\n", |
| 124 | + " \"\"\"CREATE STREAMLIT IF NOT EXISTS $db.$schema.$app_name\n", |
| 125 | + " ROOT_LOCATION = '@$db.$schema.$stage'\n", |
| 126 | + " MAIN_FILE = '$main_file'\n", |
| 127 | + " QUERY_WAREHOUSE = $wh\n", |
| 128 | + " COMMENT = '{\"origin\":\"sf_sit\", \"name\":\"ml_sidekick\", \"version\":{\"major\":1, \"minor\":0}, \"attributes\":{\"component\":\"sis_app\"}}'\n", |
| 129 | + " \"\"\"\n", |
| 130 | + ")" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "markdown", |
| 135 | + "metadata": {}, |
| 136 | + "source": [ |
| 137 | + "##### Populate Templates" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": 13, |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "db_query = create_db.substitute(db=metadata.get(\"database_name\"))\n", |
| 147 | + "\n", |
| 148 | + "schema_qry = create_schema.substitute(\n", |
| 149 | + " db=metadata.get(\"database_name\"), schema=metadata.get(\"schema_name\")\n", |
| 150 | + ")\n", |
| 151 | + "\n", |
| 152 | + "stage_qry = create_stage.substitute(\n", |
| 153 | + " db=metadata.get(\"database_name\"),\n", |
| 154 | + " schema=metadata.get(\"schema_name\"),\n", |
| 155 | + " stage=metadata.get(\"stage_name\"),\n", |
| 156 | + ")\n", |
| 157 | + "\n", |
| 158 | + "app_create_qry = create_streamlit.substitute(\n", |
| 159 | + " app_name=metadata.get(\"app_name\"),\n", |
| 160 | + " db=metadata.get(\"database_name\"),\n", |
| 161 | + " schema=metadata.get(\"schema_name\"),\n", |
| 162 | + " stage=metadata.get(\"stage_name\"),\n", |
| 163 | + " main_file=metadata.get(\"main_file\"),\n", |
| 164 | + " wh=metadata.get(\"query_warehouse\"),\n", |
| 165 | + ")" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": 7, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [ |
| 173 | + { |
| 174 | + "data": { |
| 175 | + "text/plain": [ |
| 176 | + "[Row(status='AUTO_ML already exists, statement succeeded.')]" |
| 177 | + ] |
| 178 | + }, |
| 179 | + "execution_count": 7, |
| 180 | + "metadata": {}, |
| 181 | + "output_type": "execute_result" |
| 182 | + } |
| 183 | + ], |
| 184 | + "source": [ |
| 185 | + "session.sql(db_query).collect()" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": 8, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [ |
| 193 | + { |
| 194 | + "data": { |
| 195 | + "text/plain": [ |
| 196 | + "[Row(status='ST_APPS already exists, statement succeeded.')]" |
| 197 | + ] |
| 198 | + }, |
| 199 | + "execution_count": 8, |
| 200 | + "metadata": {}, |
| 201 | + "output_type": "execute_result" |
| 202 | + } |
| 203 | + ], |
| 204 | + "source": [ |
| 205 | + "session.sql(schema_qry).collect()" |
| 206 | + ] |
| 207 | + }, |
| 208 | + { |
| 209 | + "cell_type": "code", |
| 210 | + "execution_count": 9, |
| 211 | + "metadata": {}, |
| 212 | + "outputs": [ |
| 213 | + { |
| 214 | + "data": { |
| 215 | + "text/plain": [ |
| 216 | + "[Row(status='APP_STG already exists, statement succeeded.')]" |
| 217 | + ] |
| 218 | + }, |
| 219 | + "execution_count": 9, |
| 220 | + "metadata": {}, |
| 221 | + "output_type": "execute_result" |
| 222 | + } |
| 223 | + ], |
| 224 | + "source": [ |
| 225 | + "session.sql(stage_qry).collect()" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "markdown", |
| 230 | + "metadata": {}, |
| 231 | + "source": [ |
| 232 | + "### Upload project files" |
| 233 | + ] |
| 234 | + }, |
| 235 | + { |
| 236 | + "cell_type": "code", |
| 237 | + "execution_count": 10, |
| 238 | + "metadata": {}, |
| 239 | + "outputs": [], |
| 240 | + "source": [ |
| 241 | + "db = metadata.get(\"database_name\")\n", |
| 242 | + "schema = metadata.get(\"schema_name\")\n", |
| 243 | + "stage = metadata.get(\"stage_name\")\n", |
| 244 | + "for i in upload_metadata.get(\"files\"):\n", |
| 245 | + " for file in i.get(\"files\"):\n", |
| 246 | + " path = \"\" if i.get(\"parent\") == \"root\" else i.get(\"parent\")\n", |
| 247 | + " session.file.put(\n", |
| 248 | + " local_file_name=file,\n", |
| 249 | + " stage_location=f\"@{db}.{schema}.{stage}/{path}\",\n", |
| 250 | + " auto_compress=False,\n", |
| 251 | + " overwrite=True,\n", |
| 252 | + " )" |
| 253 | + ] |
| 254 | + }, |
| 255 | + { |
| 256 | + "cell_type": "markdown", |
| 257 | + "metadata": {}, |
| 258 | + "source": [ |
| 259 | + "# Finally, Create the app" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": 14, |
| 265 | + "metadata": {}, |
| 266 | + "outputs": [ |
| 267 | + { |
| 268 | + "data": { |
| 269 | + "text/plain": [ |
| 270 | + "[Row(status='Streamlit STREAMLIT_AUTO_ML successfully created.')]" |
| 271 | + ] |
| 272 | + }, |
| 273 | + "execution_count": 14, |
| 274 | + "metadata": {}, |
| 275 | + "output_type": "execute_result" |
| 276 | + } |
| 277 | + ], |
| 278 | + "source": [ |
| 279 | + "session.sql(app_create_qry).collect()" |
| 280 | + ] |
| 281 | + } |
| 282 | + ], |
| 283 | + "metadata": { |
| 284 | + "kernelspec": { |
| 285 | + "display_name": "streamlit-automl", |
| 286 | + "language": "python", |
| 287 | + "name": "python3" |
| 288 | + }, |
| 289 | + "language_info": { |
| 290 | + "codemirror_mode": { |
| 291 | + "name": "ipython", |
| 292 | + "version": 3 |
| 293 | + }, |
| 294 | + "file_extension": ".py", |
| 295 | + "mimetype": "text/x-python", |
| 296 | + "name": "python", |
| 297 | + "nbconvert_exporter": "python", |
| 298 | + "pygments_lexer": "ipython3", |
| 299 | + "version": "3.10.11" |
| 300 | + } |
| 301 | + }, |
| 302 | + "nbformat": 4, |
| 303 | + "nbformat_minor": 2 |
| 304 | +} |
0 commit comments