9393
9494-  Rain:
9595
96- $$ 
97- P(Rain|Yes) = \frac{2}{6} 
98- $$ 
96+ $$ P(Rain|Yes) = \frac{2}{6} $$ 
9997
100- $$ 
101- P(Rain|No) = \frac{4}{4} 
102- $$ 
98+ $$ P(Rain|No) = \frac{4}{4} $$ 
10399
104100-  Overcast:
105101
111107$$ 
112108
113109
114- Here, we can see that
115-  $$ 
116-  P(Overcast|No) = 0 
117-   $$ 
110+ Here, we can see that P(Overcast|No) = 0
118111This is a zero probability error! 
119112
120113Since probability is 0, naive bayes model fails to predict.
@@ -124,13 +117,9 @@ Since probability is 0, naive bayes model fails to predict.
124117 In Laplace's correction, we scale the values for 1000 instances.
125118 -  ** Calculate prior probabilities** 
126119
127-  $$ 
128-  P(Yes) = \frac{600}{1002}  
129-   $$ 
120+  $$ P(Yes) = \frac{600}{1002} $$ 
130121
131-  $$ 
132-  P(No) = \frac{402}{1002}  
133-   $$ 
122+  $$ P(No) = \frac{402}{1002} $$ 
134123
135124-  ** Calculate likelihoods** 
136125
@@ -151,21 +140,13 @@ Since probability is 0, naive bayes model fails to predict.
151140
152141 -  ** Rain:** 
153142
154-  $$ 
155-  P(Rain|Yes) = \frac{200}{600}  
156-   $$ 
157-  $$ 
158-  P(Rain|No) = \frac{401}{402}  
159-   $$ 
143+  $$ P(Rain|Yes) = \frac{200}{600} $$ 
144+  $$ P(Rain|No) = \frac{401}{402} $$ 
160145
161146 -  ** Overcast:** 
162147
163-  $$ 
164-  P(Overcast|Yes) = \frac{400}{600}  
165-   $$ 
166-  $$ 
167-  P(Overcast|No) = \frac{1}{402} 
168-   $$ 
148+  $$ P(Overcast|Yes) = \frac{400}{600} $$ 
149+  $$ P(Overcast|No) = \frac{1}{402} $$ 
169150
170151
171152 2 .  ** Wind (B):**  
@@ -181,49 +162,27 @@ Since probability is 0, naive bayes model fails to predict.
181162
182163 -  ** Weak:** 
183164
184-  $$ 
185-  P(Weak|Yes) = \frac{500}{600}  
186-   $$ 
187-  $$ 
188-  P(Weak|No) = \frac{200}{400}  
189-   $$ 
165+  $$ P(Weak|Yes) = \frac{500}{600} $$ 
166+  $$ P(Weak|No) = \frac{200}{400} $$ 
190167
191168 -  ** Strong:** 
192169
193-  $$ 
194-  P(Strong|Yes) = \frac{100}{600}  
195-   $$ 
196-  $$ 
197-  P(Strong|No) = \frac{200}{400} 
198-   $$ 
170+  $$ P(Strong|Yes) = \frac{100}{600} $$ 
171+  $$ P(Strong|No) = \frac{200}{400} $$ 
199172
200173 -  ** Calculting probabilities:** 
201174
202-  $$ 
203-  P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes) 
204-   $$ 
205-  $$ 
206-  = \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}  
207-   $$ 
208-  $$ 
209-  = 0.3326 
210-   $$ 
211- 
212-  $$ 
213-  P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No) 
214-   $$ 
215-  $$ 
216-  = \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}  
217-   $$ 
218-  $$ 
219-  = 0.000499 = 0.0005 
220-   $$ 
175+  $$ P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes) $$ 
176+  $$ = \frac{600}{1002} * \frac{400}{600} * \frac{500}{600} $$ 
177+  $$ = 0.3326 $$ 
178+ 
179+  $$ P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No) $$ 
180+  $$ = \frac{402}{1002} * \frac{1}{402} * \frac{200}{400} $$ 
181+  $$ = 0.000499 = 0.0005 $$ 
221182
222183
223184Since ,
224- $$ 
225-  P(PlayTennis|Yes) > P(PlayTennis|No)  
226- $$ 
185+ $$ P(PlayTennis|Yes) > P(PlayTennis|No) $$ 
227186we can conclude that tennis can be played if outlook is overcast and wind is weak.
228187
229188
@@ -366,4 +325,4 @@ print("Confusion matrix: \n",confusion_matrix(y_train,y_pred))
366325## Conclusion  
367326
368327 We can conclude that naive bayes may limit in some cases due to the assumption that the features are independent of each other but still reliable in many cases. Naive Bayes is an efficient classifier and works even on small datasets.
369-  
328+  
0 commit comments